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Abstract: We summarize a series of models
and results related to the effective integration
of production and transportation decision mak-
ing in a multi-stage environment. For a deter-
ministic two stage supply chain, we develop and
analyze effective optimal algorithms. For con-
tinuous time stochastic version of this model, we
partially characterize the optimal policy struc-
ture, and develop heuristics. For a discrete time
stochastic version of this model, we partially
characterize the optimal policy structure. Fi-
nally, we introduce a model integrating produc-
tion and transportation outsourcing that we are
currently analyzing.

1. Introduction: For many firms, costs asso-
ciated with transportation and distribution and
inventory holding costs are a large percentage
of total product costs. Indeed, US industry
spends more than $350 Billion on transportation
and more than $250 Billion on inventory holding
costs annually (Lambert and Stock, 2001). In
many industries, parts and subcomponents are
manufactured across a variety of sites. For ex-
ample, in the personal computer industry, where

lowering product cost is of paramount impor-
tance, the location of final assembly is often dif-
ferent from the location of component assembly.
Similarly, in the pharmaceutical industry, man-
ufacturing facilities are expensive to build, and
pharmaceutical products have a limited prof-
itable life span (since after patent protection
expires, generic manufacturers can manufacture
the same product). Thus, multi-purpose plants,
which can perform several different manufactur-
ing steps for many different products, are typ-
ically built. Once a network of these plants is
constructed, new products are manufactured se-
quentially at several different plants, depending
on the particular processes required for manu-
facture.

These examples highlight the importance of
coordinating both production and inventory
policies in multi-stage supply chains. However,
although there have been tremendous academic
and practical efforts focused on minimizing the
inventory level for components and parts within
a facility while maintaining efficient production,
there has been significantly less work on coor-
dinating production and distribution simulta-
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neously, particularly when production faces ca-
pacity constraints. Efforts in this direction are
complicated by the non-linear nature of trans-
portation costs. Indeed, over the last twenty
years, driven by the adoption of JIT, CONWIP,
and flexible manufacturing systems, manufactur-
ers have devoted significant effort to setup reduc-
tion, and thus manufacturing setup costs play a
smaller and smaller role in manufacturing deci-
sion making. Most transportation, however, ex-
hibits natural economies of scale; in many cases,
an empty truck doesn’t cost much less to oper-
ate than a full one so it is crucial for successful
decision making approaches for multi-stage man-
ufacturing supply chains to explicitly account for
these non-linear transportation costs.

The objective of our ongoing research project
is therefore to develop models of multi-stage
production/distribution systems, analyze these
models, and use this analysis to develop use-

ful managerial insights, and effective algo-

rithms for planning, controlling, and operating
these systems. In this paper, we survey a vari-
ety of recent results, starting with a simple deter-
ministic model, and continuing on to a variety of
stochastic models. We conclude by sketching an
outline of our ongoing exploration of third party
logistics contracts, and their impact on produc-
tion planning.

2. Literature Review: There has been a va-
riety of literature on multi-stage inventory sys-
tems. Clark and Scarf (1960) show that a base
stock policy is optimal in a finite horizon periodic
problem with no fixed cost and no capacity con-
straint. Federgruen and Zipkin (1984a,1984b)
show that the optimality of the order-up-to
policy is still valid in the case of discounted
and average infinite horizon problems. Chen

(1994, 1998) demonstrates the effectiveness of
the (R, nQ) policy in a similar setting, while
Chen and Song (2001) characterize the structure
of the optimal policy in a multi-stage inventory
model with Markov modulated demand. A few
authors have considered the control of capaci-
tated production systems. Federgruen and Zip-
kin (1986a, 1986b) consider an inventory policy
in a capacitated production system under sta-
tionary demand with no fixed cost. Glasserman
and Tayur (1994, 1995, 1996) study a multistage
stationary production-inventory model with ca-
pacitated production and demonstrate the effec-
tiveness of IPA (infinitesimal perturbation anal-
ysis) as a tool to obtain an optimal policy. Ka-
puscinski and Tayur (1998) extend the model
to periodic demand. Parker and Kapuscinsky
(2002) consider a periodic review problem of a
two-stage capacitated echelon inventory system
with zero or deterministic leadtime and show
that the optimal policy is a modified base stock
policy. However, in their model, the replenish-
ment decision is free of economies of scale in
shipping quantity so that it is reasonable to con-
jecture that a variant of an order-up-to policy
should be optimal. In most of these papers, the
optimal policy is either a base stock policy, or a
policy with monotone structure. An exception
to this is Duenyas et al. (2003), who consider
a periodic review model with fixed cost and lost
sales when the system has “must-meet” deter-
ministic demand and random demand at each
period. They show that the optimal shipping
quantity and rationing policy are not necessarily
monotone, because the inventory on hand may
not satisfy existing demands, and can be con-
served for deterministic demand in subsequent
periods. Our analysis indicates that the optimal
policy can be very complex, as well as counter-
intuitive, when both production and distribution
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are considered in a system with non-linear dis-
tribution costs and finite production rate. We
are not aware of any research which considers
similar systems.

There has been another stream of literature
on the control of production systems. Ha (1997)
characterizes the structure of the optimal pol-
icy in make-to-stock system as a switching curve
type policy. Carr and Duenyas (2000) consider
a make-to-stock/make-to-order system. Ahn et
al. (1999), Iravani et al. (2003), Duenyas and
Patane-Anake (1998) characterize the optimal
policy in a serial production line with single or
multiple resources. Duenyas and Tsai (2002)
consider a two-stage production system where
stage one can sell its finished goods and provide
the components to the downstream stage at the
same time. However, in contrast to our proposed
research, very little research considers multiple
units shipped at a fixed cost.

There has also, of course, been a long his-
tory of research into deterministic single stage

single item lot sizing models, starting with the
seminal works of Wagner and Whiten(1958) for
the uncapacitated model, and Florian and Klein
(1971) for the capacitated model. Aggarwal and
Park (1990), Federgruen and Tzur (1991), and
Wagelmans et al. (1992) developed faster ex-
act algorithms for the uncapacitated case, while
Love (1973) and Baker et al. (1978) devel-
oped more general algorithms for the capaci-
tated case. Various authors have considered
multi-stage production models under determin-
istic constant demand. Muckstadt and Roundy
(1993) survey and summarize many of these re-
sults. The work presented in this paper allows
for time-varying multi-period demand. A vari-
ety of research has been devoted to heuristic and
mathematical programming-based methods for
deterministic multilevel, multi-product lot siz-

ing problems. Baker (1993) summarizes various
heuristic approaches which appeared in the lit-
erature up to that point, and subsequently, Har-
rison and Lewis (1996), Katok et al. (1998), and
Armentano et al.(2001) have proposed additional
heuristics for these complex problems. Although
these papers don’t explicitly mention transporta-
tion costs, some of the formulations are general
enough to encompass our model. In addition,
Chan et al. (1997) and the references therein
consider a concave cost network flow version of
a multistage inventory/transportation problem
(without capacitated production), and develop
heuristics for the problem. However, in contrast
to the heuristics these authors have focused on,
we focus on polynomial approaches to obtain the
optimal solution.

3. The Deterministic Model: The initial
deterministic model we consider consists of a two
stage supply chain which faces a deterministic
stream of external demands for a single product.
We assume an infinite supply of raw materials
at stage one, and capacitated production at both
stages. Items are manufactured at stage one, and
then held in inventory at stage one prior to ship-
ping. Items are transported to stage two, where
they are again held in inventory. Additional ca-
pacitated production is completed at stage two
(that is, value is added to each item, but no
new items are created), items are held in finished
goods inventory after this stage, and this inven-
tory is used to meet final demand. Each period,
production levels in stage one and stage two, as
well as transportation levels between stage one
and stage two, must be determined.

Formally, we consider a two-stage, n period
model of a supply chain, illustrated in Figure 1.
As described above, an infinite supply of raw
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Figure 1: Model 2SPDP

material is available at stage one. Each period,
x1

t , t = 1, 2, ..., n units are produced at stage 1,
at a cost of ct

i, where x1
t ≤ C1

t . Units can be held
in inventory at the stage 1 buffer, where a hold-
ing cost h1

t , t = 1, 2, ..., n is charged per unit at
period t. In addition, st units are also shipped to
a buffer located before stage two (with no ship-
ping lead time). If a shipment occurs, a fixed
cost of ft is charged independent of the number
of units shipped, and a variable cost of vt per
unit is charged. Units can be held in inventory
in the buffer before stage two, where a holding
cost of h2

t is charged per unit at period t. Al-
ternatively, x2

t ≤ C2
t units can enter production,

at a cost of c2
t per unit. After production, items

can be held in finished goods inventory at the
post stage two buffer where a holding cost hf

t

is charged per unit at period t or, or they can
be shipped to meet demand dt. We note that
in this model, all demand must be met, and call
this the two stage production distribution prob-
lem (2SPDP).

We summarize each period’s order of events
below:

1. Stage one production x1
t is determined, and

production cost ct
1 is charged per unit man-

ufactured.

2. The shipping quantity st is determined and
units are shipped. Fixed and variable ship-
ping cost (ft + stvt if st > 0) is charged.

3. Holding cost h1
t is charged on the i1t units

remaining in the post stage one buffer.

4. Stage two production x2
t is determined, and

production cost ct
2 is charged per unit man-

ufactured.

5. Holding cost h2
t is charged on the i2t units

remaining in the pre stage two buffer.

6. x2
t units are added to the finished goods

buffer.

7. Demand is filled from the finished goods
buffer.

8. Holding cost hf
t is charged on the units re-

maining in the finished goods buffer.

We define the following parameters: let dt be
the external demand at period t, dtn be the cu-
mulative demand from t to period n. In addi-
tion, let h1

t be the holding cost per unit in the
post stage one buffer at period t, h2

t be the hold-
ing cost per unit in the pre stage two buffer at
period t, hf

t be the holding cost per unit in the
finished goods buffer at period t, C1

t be the pro-
duction capacity at stage 1 at period t, C2

t be the
production capacity at stage 2 at period t, ft be
the fixed cost for shipping at period t, vt be the
variable cost for shipping at period t, c1

t be the
per unit production cost at stage 1 at period t,
and c2

t be the per unit production cost at stage
2 at period t.

Also, let x1
t be the production quantity at

stage one at period t, x2
t be the production quan-

tity at stage two at period t, st be the shipping
quantity at period t, yt be the shipment indica-
tor variable at period t, i1t be the inventory level
at the stage one buffer at the end of period t, i2t
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be the inventory level at the pre stage two buffer
at the end of period t and ift be the inventory
level at the post stage two buffer at the end of
period t. We model our problem as follows:

min
n

∑

t=1

(I1
t h1

t +I2
t h2

t +If
t hf

t +ytft+stvt+c1
t x

1
t +c2

t x
2
t )

s.t.

x1
t ≤ C1

t t = 1 . . . n (1)

i1t = i1t−1 − st + x1
t t = 1 . . . n (2)

st ≤ ytdtn t = 1 . . . n (3)

x2
t ≤ C2

t t = 1 . . . n (4)

i2t = i2t−1 − x2
t + st t = 1 . . . n (5)

ift = ift−1 + x2
t − dt t = 1 . . . n (6)

ift , i1t , i
2
t , x

1
t , x

2
t , st ≥ 0 t = 1 . . . n (7)

yt ∈ {0, 1} t = 1 . . . n (8)

Constraints (1) and (4) are capacity con-
straints for both stages. Constraints (2), (5),
and (6) are the inventory balance equations for
the three buffers. Constraint (3) ensures that the
fixed cost is incurred when items are shipped.

In addition, we have also considered a general
version of this model, in which rather than be-
ing characterized by a fixed and a linear cost,
the shipping costs can be a general concave cost
function: ft(st).

Kaminsky and Simchi-Levi(2001) present effi-
cient algorithms for the model described above,
both with the fixed and linear transportation
cost, and the concave transportation cost under
the following general assumptions:

• increasing holding costs:

h1
t < h2

t < hf
t ∀t ∈ 1...T.

• non-speculative assumptions:

c1
t +h1

t > c1
t+1 and c2

t +h2
t > c2

t+1 ∀t ∈ 1...n−1.

We also assume that the following cost function
holds for the case with the fixed and linear trans-
portation cost,

x(vt+h2
t−h1

t )+ft > xvt+1+ft+1 ∀t ∈ 1...n−1, x > 0.

and for the case with concave cost,:

fi(x)+(h2−h1)x > fj(x) ∀i < j, x > 0.

In all cases, we prove the following property,
which substantially reduces the complexity of
the problem:

Property 1. The optimal values for x2
t , t =

1, 2, ..., T are determined by the following recur-
sive equations:

x2
t = min{C2

t , dt +

T
∑

i=t+1

(di − x2
i )} (9)

Indeed, this result enables us to develop a sim-
pler alternate model with the same optimal pro-
duction and shipping quantities. As in the model
described above, an infinite supply of raw mate-
rial is available at stage one. Each period, x1

t

units are produced at stage one, where x1
t ≤ C1

t ,
at a cost of c1

t . Units can be held in inventory
at the stage one buffer, where a holding cost h1

t

is charged per unit at time t. st units can also
be shipped to another buffer (we refer to this
as buffer two), and a fixed cost of ft is charged
if st > 0. Units can be held in inventory in
buffer two, where a holding cost of h2

t is charged
per unit at time t or shipped to meet demand
d′t = x2

t , t = 1, 2, ..., n, where x2
t is determined

using Equation (9). Thus, we have eliminated
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a stage from the original model. We call this
equivalent model 2SPDP′.

For the case with fixed and linear trans-
portation cost, we further identify the following
structural properties:

Property 2. In any optimal solution to 2SPDP′,
shipping only occurs in periods t where the
inventory in the stage two buffer, i2t−1 = 0.

Property 3. In any optimal solution to 2SPDP′,
the shipping quantity at time t, st is equal
to some partial sum of future demands
∑a

i=t di, a ≥ t.

If we are given a production schedule, i.e, if
the variables x1

t , t = 1, 2, ..., n are already de-
termined, we can efficiently solve the problem of
determining what quantity to ship in each period
using a dynamic programming approach .

Given an efficient approach to this shipping
problem, we define a block [s,t] to be a set of
consecutive periods such that i1s−1 = 0, i1t = 0,
and i1a > 0, s ≤ a < t.

This definition leads to the following two
properties:

Property 4. In any optimal schedule, for any
block, production will be at capacity in all
periods except possibly for the first period.

Property 5. In any block, the total production
in that block is equal to some partial sum of
consecutive demands.

These properties, combined with the definition
of a block, implies that any block [s, t] serves all
demands in some interval a, a + 1, ..., b.

We have used all of the properties defined
above to develop a dynamic programming ap-

proach to solving this problem. By carefully
avoiding duplication of effort, we developed an
algorithm which allows us to solve the original
problem in O(n4) time, even when production
capacity varies over time.

This problem is much more difficult in the gen-
eral concave cost case. In particular, Properties
2 and 3 do not hold, so the approach we de-
veloped for the fixed+linear case will not work.
However, we have developed a new (more com-
plex) set of structural properties, and a new
O(n8) algorithm for the constant capacity case
(see Kaminsky and Simchi-Levi (2001)).

These results have recently been generalized
by van Hoesel et al (2004).

4. Continous Time Stochastic Model: For
our first stochastic model, in Ahn and Kaminsky
(2004), we consider a two stage push-pull supply
chain. The orders arrive at stage 2, the final
stage, according to a Poisson process with rate
λ. Two separate operations, which take place
at different locations, are required to convert
the raw materials to finished goods. We assume
that an infinite supply of raw material is avail-
able at stage 1. A single server whose processing
time follows i.i.d exponential distribution with
rate µi, i = 1, 2 is available at each of the two
stages. Items are produced at stage 1, the push
stage, and can then be either held as inventory
at stage 1, or shipped to stage two, in which
case shipping cost are incurred. Items will be
processed at stage two, the pull stage, only to

meet outstanding orders. Non-negative holding
costs are incurred on any intermediate inventory,
and penalty costs are incurred for orders waiting
to be filled. The holding cost is incurred at a
rate hi (i = 1, 2) per unit time per item, while
penalty is incurred at rate b per unit time per
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outstanding order. We assume that holding costs
are non-decreasing (i.e., h1 ≤ h2 ≤ b). Shipping
is assumed to be immediate, and a fixed cost, K,
is incurred for each shipment to reflect shipping
economies of scale. This model is illustrated in
Figure 2.

We model this problem as a Markov Decision
Process, and attempt to minimize the long run
average cost per unit time. Without loss of gen-
erality, we uniformize λ, µ1 and µ2 such that
λ + µ1 + µ2 = 1. The states of the MDP are
S(t) = (n1(t), n2(t), n3(t)) where n1(t) denotes
the number of units held in inventory at stage 1
at time t, n2 denotes the number of units held
in inventory at stage 2 (before the completion of
stage 2 operation) at time t and n3 denotes the
number of outstanding orders at time t. We as-
sume that only Markovian stationary determin-
istic policies are under consideration (and call
the class of these policies Π). In other words,
the policies in Π specify the decision as a func-
tion of the current state only. Since processing
times and interarrival times are exponential, it
is easy to see that {S(t)} is a continuous time
Markov chain where the transition rate at any
state is bounded by 1, and therefore {S(t)} is
uniformizable. By using the results of Lippman
(1975), we can translate the original continu-
ous time optimization problem into an equiva-
lent (discrete time) Markov decision process with
state s = (n1, n2, n3). Decision can be made
upon the arrival of a new order or at any service
completion. It is easy to see that stage 2 will al-
ways be busy as long as it is has product to pro-
cess and outstanding orders to fill (i.e., n2 > 0
and n3 > 0). At any decision epoch, the produc-
tion decision at stage 1 must be made (whether
or not to initiate production of a unit at stage 1),
and if n1 > 0, the distribution decision must be
made (i.e., the quantity greater than or equal to

zero which should be shipped must be decided).
Using the uniformization technique, we write the
equivalent discrete time dynamic programming.

To develop insight into the structure of opti-
mal solutions for this model, we performed com-
putational testing using the value iteration algo-
rithm with a variety of parameters. For the value
iteration, we truncated the state space such that
ni ≤ 100 by redirecting any transition to a state
outside the truncated state space to the near-
est state. Through an extensive computational
study, we observed the following. In all cases, it
is optimal to not ship if n2 > 0. (We prove a
related result below) For fixed values of n1, the
shipping decision increases monotonically in n3.
That is, there is some level of n3, which is a func-
tion of n2, below which it is optimal to not ship,
and above which it is optimal to ship. We note
that in all observed cases, this level was greater
than 0. However, for fixed values of n1, the ship-
ping quantity fluctuates in increasing n3. For
fixed values of n3, shipping quantity increases in
n1, and then cycles. The maximum and mini-
mum values of the optimal shipping quantities
increase with increasing n3. This result is sur-
prising, since it implies that in some cases it is
optimal to ship a smaller quantity as the number
of outstanding orders increases. Note that we ex-
pended considerable effort in eliminating trunca-
tion of countable state space and round-off error
as potential reasons for this striking behavior.
For example, we tried conducting a value itera-
tion on a considerably larger state space, and ex-
trapolating the relative value function for states
outside the boundary, but the optimal policy was
still non-monotonic.

Figure 3 illustrates that optimal shipping
quantity is not always monotone in the amount
of on-hand inventory at stage one or the number
of outstanding orders. In this example, it is op-
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Figure 2: 2-stage Push-Pull System

timal to ship 17 units at state (19,0,3), but 14
units at state (27,0,3), even though this second
state has more units to ship from stage one.

We characterize a sufficient condition for not

shipping in this model:

Lemma 1. For any state (n1, n2, n3), it is opti-

mal not to ship as long as n2 > 0.

This result can be easily shown using an inter-
change argument.

Unfortunately, the lack of monotonicity in the
shipping quantities makes additional structural
properties of this model difficult to determine.
Thus, we are motivated to consider a variety of
restrictions of this model. In the following sub-
section, we consider a version of this model for
which the possible set of shipping quantities is
limited. In Section 4.3, we characterize the im-
pact of this restriction on the optimal objective
value.

4.1 Restricting the Possible Shipping

Quantities: As we observed above, the opti-
mal policy of original formulation does not pos-
sess the monotonicity that we have hoped for. In
addition, our original formulation, which consid-
ers shipping every quantity between zero and the
current inventory level at each decision epoch, is

computationally inefficient. We therefore con-
sider a simplified version of the problem, in
which the firm ships the minimum of the max-
imum transportation capacity and the current
inventory level whenever the decision to ship is
made. We note that this may be a reasonable
restriction in practice, since firms may experi-
ence a physical limit on the quantity that can be
shipped at a time (one truckload, for example).
In addition, we assume that shipments only oc-
cur when inventory is zero at stage two, which
we proved above is optimal in our original model,
although not necessarily in this model. As we re-
port in Section 4.3, computational testing shows
that this restricted model performs about as well
as the original model if the shipping quantity is
selected appropriately.

At state s = (n1, n2, n3), the set of feasible
policies, As is given by

As =

{

(i, q)|i =

{

1, if produce;

0, otherwise.
,

q ∈
{

0,1{n2=0} min[n1, Q]
}

}

.

Using the uniformization technique, the opti-
mal average cost, g and the relative value func-

Proceedings of 2005 NSF DMII Grantees’ Conference, Scottsdale, Arizona Grant #DMI-0200439



Figure 3: An example of optimal shipping quantity when n3 = 0, 1, 2 and 3.
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tion, v(·), must satisfy the following equations:

v(n1, n2, n3) + g =
2

∑

i=1

hini + bn3

+min





















K + (h2 − h1)Q
+ λv(n1 − Q, Q, n3 + 1)
+ µ2v(n1 − Q, Q − 1, n3 − 1)
+ µ1 min[v(n1 − Q + 1, Q, n3),
v(n1 − Q, Q, n3)],
λv(n1, 0, n3 + 1) + µ2v(n1, 0, n3)
+ µ1 min[v(n1 + 1, 0, n3), v(n1, 0, n3)]





















for n1 ≥ Q, n2 = 0, n3 > 0.

v(n1, n2, n3) + g =
2

∑

i=1

hini + bn3

+min













K + (h2 − h1)n1 + λv(0, n1, n3 + 1)
+ µ2v(0, n1 − 1, n3 − 1)
+ µ1 min[v(1, n1, n3), v(0, n1, n3)],
λv(n1, 0, n3 + 1) + µ2v(n1, 0, n3)
+ µ1 min[v(n1 + 1, 0, n3), v(n1, 0, n3)]













for n1 < Q, n2 = 0, n3 > 0.

v(n1, n2, n3) + g =
2

∑

i=1

hini + bn3

+ λv(n1, n2, n3 + 1) + µ2v(n1, n2 − 1, n3 − 1)

+ µ1 min[v(n1 + 1, n2, n3), v(n1, n2, n3)]

for n2 > 0, n3 > 0.

v(n1, n2, n3) + g =
2

∑

i=1

hini + bn3

+ λv(n1, n2, 1) + µ2v(n1, n2, 0)

+ µ1 min[v(n1 + 1, n2, 0), v(n1, n2, 0)]

for n2 ≥ 0, n3 = 0.

In the next subsection, we characterize the op-
timal policy of this model.

4.2 The Optimal Policy for the Capac-

itated Shipping Problem – Counterintu-

itive Observations: As we mentioned above,
the restriction on shipping quantity simplifies
computational efforts. Furthermore, as the ship-
ping decision itself is monotone in the original
problem and shipping quantity initially increases
then fluctuates, we had anticipated that the
monotonicity would continue to hold when we
imposed a reasonable monotone shipping quan-
tity which resembled the spirit of the optimal
shipping quantity, such as min(n1, Q). However,
even this simplification does not result in a sim-
ple optimal policy. In fact, in many examples,
the optimal policy is not only complex, but also
counterintuitive, and very different from results
found in the literature for more simple make-
to-order models. This counterintuitive behavior
seems to be due to the non-linear shipping costs.
Later in the paper, we computationally compare
this model to an analogous model with linear
shipping costs. In this subsection, we discuss
the structure (or lack of structure) of the opti-
mal policy when shipping quantity is bounded
by Q. Clearly, the overall performance of the
system will be greatly affected by the choice of
Q. In the next section, we discuss an heuristic
approach to selecting a good Q value.

First, by studying a variety of computational
examples, we observe that neither production or
shipping decisions are monotone in most of the
state variables. In particular,

1. Even if it is optimal to ship at state
(n1, 0, n3), it is not necessarily optimal to
ship at state (n1, 0, n3 + 1).

2. Even if it is optimal to ship at state
(n1, 0, n3), it is not necessarily optimal to
ship at state (n1 +1, 0, n3), even in the case
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when n1 > Q so the shipping quantity re-
mains the same.

3. The production policy at stage 1 is not nec-
essarily monotone in the inventory level at
stage 1, that is, even if it is optimal not to
produce at state (n1, n2, n3), it may be op-
timal to produce at state (n1 + 1, n2, n3).

4. The production policy at stage 1 is not nec-
essarily monotone in the number of out-
standing orders. Even if it is optimal to pro-
duce at state (n1, n2, n3), it is not necessar-
ily optimal to produce at state (n1, n2, n3 +
1).

While in some examples the optimal policy is
monotone (mostly when fixed shipping cost is
close to zero or small), there are many other
examples showing that such monotonicity does
not hold in general. As can be seen in Fig-
ure 4, the optimal policy can not be character-
ized by a simple switching curve. First, consider
the lack of monotonicity in n3. In the example,
when n1 = 10, it is optimal not to ship when
n3 ∈ {0, 1, 5, 6, 7}, but optimal when n3 takes on
any other value. Although this seems counter-
intuitive, consider the following possible expla-
nation. In the optimal policy, units shipped from
stage 1 cover current and (possibly) future out-
standing orders. Any shipment decision balances
increased holding cost in stage two with backo-
rder cost. In addition, any shipment less than Q
also accounts for increased shipping costs. Also,
once a shipment is made, the next shipment can-
not be made until inventory at stage 2 is once
again zero, and the time until inventory at stage
two is once again zero depends on the backorder
level during the first shipment, and the amount
shipped. For very low backorder levels (n3 = 1

in this example), increased holding and trans-
portation costs offset increased backorder costs,
so it is optimal not to ship. For certain low back-
order levels (n3 = 2 in this example), the benefit
from shipping, decreased backorder costs, may
outweigh the benefits of waiting and producing
more before shipping. This effect is enhanced by
the fact that backorder level is likely to be rela-
tively low at the time of the next shipment, since
the amount being shipped is relatively small, and
much of it is already allocated to existing backo-
rders. However, for other small backorder levels
(n3 = 5, 6, 7 in this example), the benefit of de-
laying shipment (consequently shipping more in
a later time) dominates the benefit of shipping
immediately. Finally, as the backorder level gets
larger, it again makes sense to ship immediately,
as the backorder level at the next shipment will
be large regardless of whether or not some quan-
tity is immediately shipped.

The non-monotonicity of shipping in n1 can be
explained similarly. When there are few units
in stage 1, shipping immediately is suboptimal
since doing so fails to take advantage of the
economies of scale in shipping. However, as the
number of units in stage 1 increases, the ship-
ping cost per unit decreases. However, at some
point, increasing stage 1 holding cost may begin
to dominate, so that it therefore becomes opti-
mal to wait until additional orders arrive before
shipping.

Figure 5 shows an example where the optimal
production policy is not monotone in backorder
levels. For instance, it is optimal to produce for
n3 ≤ 3 or n3 ≥ 8, but optimal not to produce
for 4 ≤ n3 ≤ 7 when n1 = 7. For low back-
order levels, it is optimal to produce, but not
to ship since backorder cost is not high enough
to justify immediate shipping (with resultant in-
creased per unit shipping charges). However, as
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Figure 4: An optimal policy at n2 = 0 in a capacitated shipping problem.
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the backorder level gets larger, it makes sense
to ship immediately for n3 ≥ 4 as in Figure 5.
While it is optimal not to produce after a ship-
ment for medium backorder levels (n3 = 4, 5, 6, 7
in this example), it is optimal to produce after a
shipment for high backorder levels. This is true
because with high backorder, the time until the
next time inventory is again zero at stage two
decreases. Thus, production must continue to
ensure that there is enough material to include
with the next shipment. On the other hand, with
lower backorder, it will be longer until the next
shipment is required. Indeed, the time at which
inventory at stage two is zero after a shipment
stochastically decreases in the number of out-
standing orders.

This phenomenon is affected by the relative
production and arrival rates. When the produc-
tion rate at stage 1 is higher than the rate at
stage 2, it is more likely to be optimal to wait
before producing at stage one, as the time un-
til another shipment is required is greater. As
backorder costs increase, the value of waiting un-
til the next shipment decreases, so production is
more likely, although only if relative processing
rates suggest that this production is likely to be
shipped relatively soon.

This example contradicts the intuition estab-
lished by the optimal solution to many make-to-
order models. The conventional intuition sug-
gests that the optimal production rate should
increase as the number of outstanding orders in-
creases so that the system can clear orders as
soon as possible. Therefore, as the backorder
cost becomes high, it becomes urgent to reduce
outstanding orders. However, at the push-pull
boundary, the finite capacity at stage 2 damp-
ens such urgency. When there is enough time to
produce units at stage 1 while stage 2 is busy,
the production can be delayed. On the other

hand, the benefit of increasing shipping quanti-
ties increases when backorder cost is small and
shipping cost is high. Therefore, it becomes op-
timal not to ship, but to produce when there are
few backorders.

The non-monotonicity of optimal production
policy in n1 is even more intriguing. Observe in
Figure 6 that it is optimal to produce at state
(9, 0, 2) although it is optimal not to produce at
state (8, 0, 2). Most previous analysis of related
models implies that it is optimal to produce un-
til the inventory level reaches a certain point (al-
though this point may be state dependent). This
example contradicts that intuition, since it is op-
timal to produce at a particular state, (9, 0, 2),
but not at a state with lower inventory, (8, 0, 2).
In general, this counterintuitive behavior seems
to occur when n2 is low. In fact, when n2 = 0
or 2, the production policy is characterized by a
monotone switching curve in the opposite direc-
tion to what intuition may suggest

Although this seems perplexing, consider the
following possible explanation. When the fixed
shipping cost is extremely high as in this exam-
ple, it is optimal to ship Q units when a shipment
occurs. Therefore, stage 1 will always produce Q
units before a shipment occurs. Now, if holding
costs are similar at stage 1 and stage 2, it makes
little difference if inventory is held at stage 1 or
at stage 2. Thus, when the inventory level at
stage 1 is close to Q, it becomes optimal to pro-
duce more units (up to Q), then ship to stage 2,
rather than storing inventory at stage 1. How-
ever, when the inventory level at stage 1 is low,
it is optimal to wait for more outstanding or-
ders before producing additional units to ship.
Thus, in this case, the optimal policy is mono-
tone in the counter-intuitive direction (i.e., the
more inventory there is, the more valuable it is
to produce more.) However, as the level of inven-
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Figure 5: The non-monotonicity of production policy in n3 when n2 = 0.
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Figure 6: The non-monotonicity of production policy in n1 (λ = .05,µ1 = .50, µ2 = .45, h1 = 1.0,
h2 = 1.05,b = 1.10, K = 1000.0 ,and Q = 12)
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tory at stage 2 increases, this effect diminishes,
as the time until the next shipment increases. In
Figure 6, for example, this “opposite direction
monotonicity” disappears when n2 ≥ 6.

Although the optimal policy to this problem is
clearly complex, we are able to partially analyti-
cally characterize its structure. We show that it
is always optimal to ship if there are at least Q
units of inventory and at least Q units of backo-
rder.

Lemma 2. For any state (n1, 0, n3) such that

n1 ≥ Q and n3 ≥ Q, it is optimal to ship inde-

pendent of production policy.

Proof. We prove the claim by a sample path ar-
gument that any policy with delayed shipping
can be improved by a policy with immediate
shipping. Without loss of generality, we assume
that t = 0. Let w be a sample path in a proba-
bility space P large enough to contain all future
arrivals and service times. Suppose that in the
optimal policy Π∗, shipping is delayed by ts > 0.
Let T denote the first time that n2(t) becomes
zero after shipping Q units at time ts on a given
sample path, w. Also, let pΠ∗

(t) be the cumula-
tive units produced in stage 1 by time t,DΠ∗

(t)
be the cumulative units produced in stage 2 at
time t under policy Π∗, and A(t) be the cumu-
lative number of arrivals to be system by time
t. It can be easily shown that the stage 2 re-
mains idle until time ts (that is when the first
shipment occurs) and works to produce Q con-
secutive units without idling. The process will
reaches state (n1 +PΠ(T )−Q, 0, n3 +A(T )−Q)
under policy Π∗ at time T and the total cost
accumulated over this interval [0, T ], denoted as
CΠ∗

((0, T ];w), can be expressed as the follow-

ing:

CΠ∗

((0, T ];w) =

∫ ts

0

[

h1(n1 + pΠ∗

(t))

+ b(n3 + A(t))
]

dt +

∫ T

ts

[

h1(n1 + pΠ∗

(t) − Q)

+ h2(Q − DΠ∗

(t)) + b(n3 + A(t) − DΠ∗

(t))
]

dt

Consider another policy Π on the same sam-
ple path, that mimics the production of pol-
icy Π, but ships Q units at time zero instead
of ts. Under this policy, Q units are produced
without idling and idling occurs in the interval
(T − ts, T ] at stage 2 (i.e., DΠ(t) = DΠ∗

(t + ts)
for t ∈ [0, T − ts] and DΠ(t) = DΠ∗

(T ) = Q for
t ∈ [T − ts, T ].) After T , policy Π mimics the
production and shipping decisions of policy Π∗.
For every sample path, it can be easily shown
that the sample paths under both policies coin-
cide after T . The total cost accrued over this
interval [0, T ], denoted as CΠ ((0, T ];w), is

CΠ ((0, T ];w) =

∫ T

0

[

h1(n1 + pΠ(t) − Q) + b(n3

+ A(t) − DΠ(t))
]

dt +

∫ T−ts

0

[

h2(Q − DΠ(t))
]

dt

=

∫ T

0

[

h1(n1 + pΠ∗

(t) − Q)
]

dt +

∫ T−ts

0

[

b(n3

+ A(t) − DΠ∗

(t + ts)) + h2(Q − DΠ∗

(t + ts))
]

dt

+

∫ T

T−ts

[b(n3 + A(t) − Q)] dt.

Comparing the cost associated with policy Π∗

and the cost associated with policy Π, we have

CΠ∗

((0, T ];w)−CΠ ((0, T ];w) =

∫ ts

0
Q(h1+b)dt ≥ 0.

The result holds for every sample path. There-
fore, for any policy under which the shipping is
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delayed, it is possible to construct an immediate
shipping policy which is better for every sample
path. This contradicts the optimality of policy
Π∗.

Of course, the performance of this restricted
model relative to the original model depends on
the selection of a good Q value. In Section 4.3,
we demonstrate that if we select the best possible
Q value, the gap between the average cost of this
policy and the average optimal cost is very small.

4.3 Computational Analysis: Our compu-
tational experiments are designed to characterize
the loss associated with restricting the shipping
quantity to the minimum of some Q value and
the available inventory and characterize the im-
pact of non-linear shipping costs. We tested a
variety of combinations of system parameters:

• h1, h2, b ∈ {(1, 2, 5), (1, 4, 15)}

• K ∈ {250, 1000, 5000}

• λ, µ1, µ2 ∈ {(.2, .4, .4), (.15, .6, .25),
(.15, .25, .6)}

We vary costs so that they increase a relatively
small amount and a relatively large amount be-
tween stages, we consider a variety of fixed costs,
and we consider processing rates which are much
faster at stage one, and much faster at stage two.
All of the examples are solved through a value
iteration on a sufficiently large truncated state
space to alleviate any boundary effect.

For each of the combinations of system pa-
rameters listed above, we tested a variety of Q
values Q = 1, 2, ..., 70. Table 1 displays these re-
sults. Note that we essentially lose nothing by
making this assumption. Indeed, in all cases the
objective value for the best possible Q is almost

identical to the optimal objective value for the
original model. We have to consider four deci-
mal digits to see a difference in most cases. In
addition, this result is relatively insensitive to Q.
Figure 7 graphs objective value versus Q value
for one sample problem (The problem instance
is: h1 = 1, h2 = 2,b = 5, K = 250, λ = .2,
µ1 = .4,µ2 = .4). Observe that the objective
value is very close to optimal for a large range
of Q values. The performance of all the sample
problems we considered was similar.

To determine the impact of non-linear ship-
ping costs on total system cost, in the last col-
umn of Table 1, we present system cost if ship-
ping cost is linear, and equal to K/Q where Q is
the optimal Q value for the restricted shipping
problem. In all cases, this system is significantly
less expensive than the system with fixed ship-
ping costs.

5. A Discrete Time Stochastic Model: In
many cases, a discrete time model is more appli-
cable. In addition, we were motivated to explore
the discrete time model to help us understand
which of the observations made in the continu-
ous time case are general, and which seem to be
specifically related to the continous time nature
of that model. In this case, we consider a man-
ufacturing system consisting of two stages fac-
ing stochastic demand through n periods. An
infinite supply of raw material is available at
stage one. Production at stage one is uncapaci-
tated while the one at stage two is capacitated.
Items are manufactured at stage one, and then
held in inventory at stage one prior to shipping.
Transported items are held in inventory at stage
two until additional production is completed and
then the external demand is met.

Our problem is to determine the production
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h1 h2 b K λ µ1 µ2 Optimal Restrict. Ship Linear

1 2 5 250 0.2 0.4 0.4 22.2961 22.2966 10.5471

1 4 15 250 0.2 0.4 0.4 38.6485 38.6502 29.4737

1 2 5 1000 0.2 0.4 0.4 37.7050 37.7056 14.5638

1 4 15 1000 0.2 0.4 0.4 59.7015 59.7025 34.9888

1 2 5 4000 0.2 0.4 0.4 68.0791 68.0804 26.5500

1 4 15 4000 0.2 0.4 0.4 101.1060 101.1076 50.8105

1 2 5 250 0.15 0.6 0.25 21.7331 21.7344 14.4781

1 4 15 250 0.15 0.6 0.25 42.1668 42.1690 33.8936

1 2 5 1000 0.15 0.6 0.25 34.5979 34.599685 18.6450

1 4 15 1000 0.15 0.6 0.25 60.1309 60.133752 40.1438

1 2 5 4000 0.15 0.6 0.25 59.9318 59.934515 26.9787

1 4 15 4000 0.15 0.6 0.25 95.6139 95.6182 52.6442

1 2 5 250 0.15 0.25 0.6 16.9865 16.9876 9.2840

1 4 15 250 0.15 0.25 0.6 26.3363 26.3505 21.8587

1 2 5 1000 0.15 0.25 0.6 29.8138 29.8154 11.1591

1 4 15 1000 0.15 0.25 0.6 43.6287 43.6309 24.3597

1 2 5 4000 0.15 0.25 0.6 55.4480 55.4504 26.1596

1 4 15 4000 0.15 0.25 0.6 78.3368 78.3406 41.6330

Table 1: Performance When Shipping Quantity is Restricted, and with Linear Shipping Costs

Figure 7: Q vs. Objective for restricted shipping.
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Figure 8: Two-Stage System

level at first stage, as well as the transportation
level between stage one and stage two at each
period. Notice that the first stage is operated
in a push-based manner, utilizing the economies
of scale in transportation. On the other hand
the second stage is clearly a pull-based stage in
which the production level is directly determined
by the external demand. Although production is
unrestricted at stage one, shipment from stage
one to stage two is restricted by the amount of
inventory at stage one. Similarly the production
at stage two is limited by the amount of inven-
tory plus shipment at stage two as well as the
production capacity at stage two.

5.1 The Sequence of Events: In each (dis-
crete) time period, the following events take
place in the following order:

1. Make shipment and production decisions.

2. Receive shipment at stage two inventory.

3. Realize demand, update inventory position
at stage two.

4. Receive production at stage one inventory.

5. Calculate the costs.

5.2 Notation and Formulation: We employ
the following notation in our analysis.

I1
t : Inventory level at stage one at the beginning

of period t.

I2
t : Inventory level at stage two at the beginning

of period t.

Bt: Backlog level at stage two at the beginning
of period t.

x1
t : Production level at stage one at period t.

x2
t : Production level at stage two at period t.

st: Shipment level from stage one to stage two
at period t.

h1: Unit holding cost of inventory at stage one.

h2: Unit holding cost of inventory at stage two.

p: Unit penalty cost of backlogged demand.

c1: Unit production cost at stage one.

c2: Unit production cost at stage two.

C: Production capacity of stage two.

K: Fixed cost for shipping.

N : Number of periods.

dt: External demand (random disturbance) re-
alized at period t.

α: Discount factor.
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~It: State vector.
~ut: Control vector.
Dt: Random disturbance space.
St: State space.
Ct: Control space.
Ut: State constrained control space.
π: Policy (control law).
µt: Control function.

We employ this notation to define the follow-
ing dynamic program:

dt ∈ Dt, where Dt ⊆ Z+.

~It = (I1
t , I2

t , Bt) ∈ St, where St ⊆ Z3+.

~ut = (x1
t , st) ∈ Ct, where Ct ⊆ Z2+.

~ut ∈ Ut(~It), where

Ut(~It) =
{

(x1
t , st) ∈ Ct|st ≤ I1

t

}

.

π = {µ0, ..., µN−1}, ~ut = µt(~It), where

µt(~It) ∈ Ut(~It), for all ~It ∈ St.

~It+1 = ft

(

~It, µt(~It), dt

)

, where

ft

(

(I1
t , I2

t , Bt), (x
1
t , st), dt

)

=
[

I1
t + x1

t − st,

I2
t + st − min(Bt + dt, I

2
t + st, C),

Bt + dt − min(Bt + dt, I
2
t + st, C)

]

.

minJπ(~I0) = E

{

N−1
∑

t=0

αtgt

(

~It, µt(~It), dt

)

}

, where

gt

(

(I1
t , I2

t , Bt), (x
1
t , st), dt

)

= (I1
t + x1

t − st)h1

+
[

I2
t + st − min(Bt + dt, I

2
t + st, C)

]

h2

+
[

Bt + dt − min(Bt + dt, I
2
t + st, C)

]

p

+ K1(st>0) + x1
t c1 + min(Bt + dt, I

2
t + st, C)c2.

JN ( ~IN ) = 0, and

Jt(~It) = min ~ut

{

x1
t c1 + K1(st>0)

+ (I1
t + x1

t − st)h1

+ h2E
[

I2
t + st − min(Bt + dt, I

2
t + st, C)

]

+ pE
[

Bt + dt − min(Bt + dt, I
2
t + st, C)

]

+ c2E
[

min(Bt + dt, I
2
t + st, C)

]

+ αE

[

Jt+1

(

ft

(

~It, µt(~It), dt

)

)

]

}

.

5.3 Results: To gain insight into the structure
of optimal policy for this model, we performed
computational testing using the value iteration
algorithm with a variety of parameter values.
For the value iteration, we truncated the state
space with a conservative upper bound, redirect-
ing any transition to a state outside the trun-
cated space to the nearest state in. Through
an extensive computational study, we observed
that neither optimal production nor shipping de-
cisions are monotone in most of the state vari-
ables. The following examples are taken from
the optimal solution to a given set of particular
parameters.

1. The production level at stage one is not
monotone in outstanding orders. For exam-
ple, while x = 9 at (9,8,8); x = 0 at (9,8,9).

2. The production level at stage one is not
monotone in inventory level at stage one.
For example, while x = 0 at (10,8,5); x = 5
at (11,8,5).

3. The production level at stage one is not
monotone in inventory level at stage two.
For example, while x = 0 at (9,8,9); x = 9
at (9,9,9).

4. The shipment level is not monotone in out-
standing orders. For example, while s = 9
at (9,8,12); s = 1 at (9,8,13).

5. The shipment level is not monotone in in-
ventory level at stage two. For example,
while s = 7 at (13,2,8); s = 13 at (13,3,8).
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As can be observed from the examples, the
optimal policy is not only complex but also
counterintuitive. This counterintuitive behavior
seems to stem from the nonlinear shipping costs.
The production capacity at stage two further
complicates the structure of the optimal policy.

We were able to prove the following two propo-
sitions, which are fairly intuitive.

Proposition 1. I2
t ≥ C implies st = 0.

Proof. For sake of contradiction, suppose that in
the optimal policy, π, in period t the shipment
level is positive although I2

t ≥ C. Consider the
policy, π, which is the same as π except st = 0,
and st+1 = st+1 + st. But Jπ(~I0) − Jπ(~I0) =
st(h2−h1) > 0, which contradicts the optimality
of π.

Proposition 2. I2
t ≥ 2C implies xt = 0.

Proof. For sake of contradiction, suppose that in
the optimal policy, π, in period t the production
level is positive although I2

t ≥ 2C. Consider the
policy, π, which is the same as π except xt = 0,
and xt+1 = xt+1 + xt. Notice that the optimal
shipment level at the next period is zero, st+1 =
0, by the previous result; thus such a policy, π,
exists. But Jπ(~I0) − Jπ(~I0) = xth1 > 0, which
contradicts the optimality of π.

5.4 Modifications of the Initial Model:

The lack of monotonicity in both the shipping
and production levels makes the structural prop-
erties of this model very difficult to determine.
Thus, we are motivated to consider various mod-
ifications of this model in the hope of better char-
acterizing optimal policy structure. We consid-
ered the following:

1. In this model, we restrict shipment to ei-
ther zero or the minimum of the inventory

at hand and Q, where Q is an additional
parameter specifying the shipment upper
bound.

2. In this model, we restrict production to an
(s,S) type policy. Hence the production de-
cision is eliminated from the problem, re-
ducing the dimension of the control space
to one.

3. In this model, we restrict shipment to an
(s,S) type policy; i.e. whenever the inven-
tory at stage two drops below s min(S −
I2
t , I1

t ) is shipped, otherwise there is no ship-
ment. Hence the shipment decision is elim-
inated from the problem, reducing the di-
mension of the control space to one.

4. In this model, we restrict shipment to either
Q (given I1

t ≥ Q) or zero, where Q is an ad-
ditional parameter specifying the shipment
level. Hence the shipment decision becomes
a binary one.

For all the modified models, we performed the
same computational testing using the value iter-
ation algorithm with a variety of parameter val-
ues. Although the computational effort is sub-
stantially reduced by all of the modified models,
the structure of the optimal policy is hardly sim-
plified by the first three of them. The optimal
policy structure of the fourth modified model is
remarkably well behaved compared to the others,
and we were able to partially characterize the
optimal policy structure more extensively than
in the other cases. Unfortunately, the complete
characterization of the optimal policy structure
eluded us in all of the models we considered. It
appears that both discrete and continuous time
stochastic versions of this model behave quite
counter-intuitively, and optimal polices are in
both cases very complex.
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6. Third Party Logistics Contracting: Fi-
nally, building on prior research, over the next
year we will investigate third party logistics con-
tracting in a multi-stage production/distribution
environment. As we have argued above, in a
supply chain, production and distribution op-
erations are generally the most important op-
erational functions. It is crucial to integrate
these two functions by planning and schedul-
ing them jointly in a coordinated way to achieve
optimal operational performance of the supply
chain. On the other hand, outsourcing non-core
competencies has now become a widely accepted
practice across many industries. Running an in-
house trucking fleet is a difficult task and not a
core competency. Hence, acquiring transporta-
tion contracts and coordinating production and
distribution operations with them have become
critical operational and tactical points of interest
in a supply chain.

Transportation contracts in the modern era
often specify in advance the frequency and vol-
ume to be reserved by the carrier for a particular
customer’s future deliveries. The most common
types of transportation contracts in research lit-
erature and practice are the following:

1. Long-term (or forward buy or fixed com-
mitment) contracts, which specify a fixed
amount of service to be delivered at some
point in the future.

2. Option contracts, in which the buyer pre-
pays the reservation price (or premium) for
the service capacity and then pays the ex-
ecution (or exercise) price for each unit of
capacity used.

3. Flexibility contracts, in which a fixed
amount of supply is determined when the

contract is signed, but the amount to be de-
livered and paid for can differ by no more
than a given percentage established upon
signing the contract. These contracts are
used in practice to share risk between the
parties, and are equivalent to a relevant
combination of a long-term contract and an
option contract.

We are interested in developing and analyzing
mathematical models of supply chain networks
integrating production and distribution opera-
tions through the use of transportation con-
tracts. In this general setting we plan to consider
the following research problems:

1. We will consider a manufacturer in posses-
sion of a transportation contract of one of
the types described above over a given finite
horizon. This manufacturer faces stochas-
tic demand, and has access to a spot mar-
ket for expedited shipping. At each pe-
riod, given the demand at that period the
manufacturer have to decide between im-
mediate shipment and consolidating orders
to utilize the transportation contract. We
aim to determine the optimal operation of
the production and distribution functions of
the manufacturer in this setting, while gain-
ing important practical insights for supply
chain operation.

2. Given the solution of the first problem, we
are interested in jointly optimizing the ac-
quisition and the operation of the trans-
portation contracts. For this purpose, we
assume a large pool of available transporta-
tion contracts with various schedules and
contract parameters.

3. Given the solution of the second problem,
now intend to consider the problem from the
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transportation provider’s point of view and
tackle the questions of designing and pricing
transportation contracts in a market with a
pool of buyers under competition.
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