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Abstract: We present a novel single facility
due-date quotation model and algorithm, and
characterize the effectiveness of this algorithm
employing the tools of probabilistic analysis.
This model is intended to be a building block
for the models that we will use to analyze due
date quotation in make-to-order supply chains,
and we present a summary of these models.

1. Introduction: The vast majority of recent
supply chain research focuses on make-to-stock
systems, and performance measures built around
service and inventory levels. On the other hand,
an increasing number of supply chains are better
characterized as make-to-order systems. This is
particularly true as more and more supply chains
move to a mass customization-based approach
to satisfying customers (see Simchi-Levi, Kamin-
sky, and Simchi-Levi [31]). Mass customization
implies that at least the final details of project
manufacturing must occur after specific orders
have been received, and must thus be completed
quickly and efficiently.

Clearly, make-to-order supply chains face
many unique issues. One of the most significant

is that since customers place orders and wait for
products to arrive, due dates or delivery dates
must typically

be quoted when a product is ordered. Re-
cently, researchers have introduced a variety of
models in an attempt to understand effective due
date quotation. In some models, the assumption
is made that orders will be placed independent
of the length of the quoted lead time (see [1] for a
survey), where the quoted lead time is typically
defined to be the time span from the arrival of
a job until its quoted start-processing time (or
quoted due date). The objective in this case
is frequently to minimize average quoted lead
time subject to some constraint on the number
or amount of tardy jobs. The majority of pa-
pers based on these models have been simulation
based. For instance, Eilon and Chowdhury [2],
Weeks [3], Miyazaki [4], Baker and Bertrand [5],
and Bertrand [6] consider various due date as-
signment and sequencing policies, and in general
demonstrate that policies which use estimates of
shop congestion and job content information lead
to better shop performance than policies based
solely on job content.
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Some analytical results do exist for limited
versions of these models. Primarily, these con-
sist of deterministic, common due date models,
where a single due date must be assigned for
all jobs, and static models, where all jobs are
available at time 0. For these simplified mod-
els, a variety of polynomial algorithms have been
developed (see Brucker[7], Kahlbacher[8], Pan-
walkar et al.[9], Hall and Posner [10], Seidmann
et al.[11], and Chand and Chhajed [12]); how-
ever, these results don’t extend in an obvious
way to more complex models.

In other models, not all potential jobs are
processed. In some of these models, a max-
imum lead time is associated with each cus-
tomer. The firm decides whether or not to ac-
cept a particular offer, and if the offer is ac-
cepted, a perfectly reliable lead time (which must
be less than the customers maximum lead time)
is quoted. In other words, an accepted job has
to start processing within its quoted lead time.
The objective typically involves a revenue func-
tion which decreases with increasing quoted lead
times. This is known as the Lead Time Quota-
tion (LTQ) problem (see Keskinocak, Ravi, and
Tayur [13] and the references therein). Again,
effective algorithms exist for special cases of this
problem, but not for the most general cases.

Some researchers approach LTQ models with
a queuing theoretic framework. For example,
Wein [14] considers a multiclass M/G/1 queu-
ing system under the objective of minimizing the
weighted average lead time subject to the con-
straints of the maximum fraction of tardy jobs
and the maximum average tardiness. Spearman
and Zhang [17] further characterize heuristic per-
formance for these types of systems. In order to
capture the impact of quoted lead times on de-
mand, some models assume that given a quoted
lead time, the customer decides whether or not

to place an order. The probability that a cus-
tomer places an order decreases with increasing
lead time. Duenyas and Hopp [16] consider such
a system using a queuing model, and provide ef-
fective heuristics under various problem charac-
teristics. In their model, there is a single class of
customers; the net revenue per customer is con-
stant, customers have the same preferences for
lead times, and the arrival and processing times
follow the same distribution. Duenyas [15] ex-
tends their results to multiple customer classes,
with different net revenues and lead time prefer-
ences.

Kaminsky and Hochbaum [30] survey due date
quotation models in more detail.

In Kaminsky and Lee [29], we introduce a new
due date quotation model (DDQP) which cap-
tures some of the key elements of the models
and approaches above. In this model, jobs or
orders arrive to a single server, representing a
manufacturing organization, over time. All jobs
are accepted, and due dates must be quoted im-
mediately upon job arrival. The objective is to
minimize average quoted lead time (or quoted
due date), and all due dates must be met. Based
on this 100% reliable due date quotation model,
they develop an on-line due date quotation al-
gorithm (DDQ) with several variations, charac-
terize the asymptotic performance of this algo-
rithm, and then analyze asymptotic probabilis-
tic bounds on its performance. In Kaminsky and
Lee [32], we extend the DDQP model to a more
complex environment, the flow shop. In that pa-
per, we developed a flow shop on-line due date
quotation algorithm, analyze asymptotic bounds
on its performance under some probabilistic as-
sumptions, and then presented computational
results which demonstrate the effectiveness of
the algorithm.

In our current work, we are exploring due date
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quotation in supply chains. In particular, we will
focus on a simple 2 party supply chain, in which
a manufacturer works to satisfy customer orders.
Customers arrive at the manufacturer over time,
and the manufacturer produces to order. In or-
der to complete production, the manufacturer
needs to receive a component from a supplier.
Each order takes a different amount of time to
process at the manufacturer, and at the supplier.
The manufacturer’s objective is to determine a
schedule and quote due dates in order to mini-
mize a function of due date quoted, and lateness.

Our primary objective is develop effective ap-
proaches for scheduling both the centralized and
decentralized versions of this model, so that we
can investigate the relative advantage of a cen-
tralized system under various conditions. To do
this, we will focus on three models. In the first
model, the centralized model, both facilities are
controlled by the same agent, who quotes a due
date to the arriving customer, and then sched-
ules jobs in both facilities in order to achieve
the end objective. In the second model, the sim-
ple decentralized model, the manufacturer makes
certain assumptions about the supplier in order
to estimate a due date, and the supplier follows
a simple scheduling priority rule. In this model,
each facility is working to achieve its own goals.
In the third model, the decentralized model with
additional information exchange, both manufac-
turer and supplier quote due dates, the supplier
to the manufacturer, and the manufacturer to
the end customer based on the due date quoted
to the manufacturer from the supplier.

We will model the situation in the centralized
model as a flowshop. As pointed out in Kamin-
sky and Simchi-Levi [21] and Pinedo [22], most
of the flow shop related research has focused on
minimizing the makespan since the other objec-
tives such as minimizing total completion time is

very difficult to analyze. However, we analyze a
due-date based flowshop model, and our analy-
sis of the flowshop depends on novel analysis of a
single machine model. In this model, jobs arrive
at a single server over time. Due dates must be
quoted to arriving customers, and jobs must be
sequenced on the server to minimize a function
of quoted due dates, and lateness. Our analysis
of both centralized models will also rely on our
analysis of the same model. In this paper, we
present our analysis of this single machine model,
and then introduce our supply chain models.

Of course, these are very difficult problems.
Indeed, most versions of models related to those
described above are NP hard. Thus, we focus
on developing effective heuristics for determinis-
tic versions of these models. Using the tools of
probabilistic analysis, as well as computational
testing, we characterize the performance of these
heuristics under various conditions. In particu-
lar, we determine conditions under which these
heuristics provide asymptotically optimal solu-
tions for these models.

To put our work into perspective, we high-
light other research relating to probabilistic anal-
ysis of scheduling problems. To the best of our
knowledge, none of this work has focused on due
date quotation models, and the vast majority has
focused on relatively simple objectives, and the
analysis of relatively simple algorithms. Much of
this work has focused on parallel machine prob-
lems, including the work of Coffman, Frederick-
son and Lueker [23], Loulou [24] and Frenk and
Rinnooy Kan [25], who analyze the parallel ma-
chine scheduling problem when the objective is
to minimize the makespan, and Spaccamela et
al.[26] and Webster [27], who analyze the paral-
lel machine weighted completion time model. Ra-
mudhin et al.[28] who analyze the 2-machine flow
shop makespan model. Kaminsky and Simchi-
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Levi(1999) [21], Kaminsky and Simchi-Levi [18]
and Xia, Shanthikumar, and Glynn [20] analyze
the flow shop average completion time problem.
Finally, Kaminsky [33] considers the flow shop
delivery time problem, which is closely related
to the flow shop maximum lateness problem, a
model which involves due dates, although they
are given rather than determined by the model.

Also, we will focus on on-line algorithms for
these models. In this context, on-line schedul-
ing algorithms sequence jobs at any time using
only information pertaining to jobs which have
been released by that time. This models many
real world problems, where job information is
not known until a job arrives, and information
about future arrivals is not known until these
jobs arrive. In contrast, off-line algorithms may
use information about jobs which will be released
in the future. It is clear that in order to find the
optimal solution to this model, it may be neces-
sary to account for future arrivals when assigning
due dates, and it may be necessary to insert idle
time into the schedule while waiting for certain
jobs to arrive, both of which suggest that off-line
algorithms, which can utilize information about
future arrivals to assign due dates and to decide
whether or not to insert idle time in the sched-
ule, will perform better than on-line algorithms
which can’t.

In the next section, we introduce the single fa-
cility model, and relevant heuristics and results.
In section 3, we introduce our supply chain mod-
els, which we intend to analyze in the near fu-
ture.

2 The Single Machine Model and Main

Results

2.1 The Model: We consider a single-machine
online production system. Customers arrive at
the system over time, and place an order (equiva-
lently, jobs are released over time). The process-
ing time of the order is known when the customer
arrives, and the producer quotes a due date at
the time of the arrival, with the goal of minimiz-
ing costs associated with the time until the due
date, and costs associated with completing the
processing of the job after its quoted due date.

In this model, a set of jobs needs to be pro-
cessed non-preemptively on a single machine.
Each job has an associated type l, l = 1, 2, ...k,
and each type has an associated processing time
pl. Each job i, i = 1, 2, ..., n also has an associ-
ated release time ri. Also, the operator of the
system quotes a due date for each job di. In par-
ticular, we focus on a system in which due dates
are quoted without any knowledge of future ar-
rivals - an online system. However, information
about the current state of the system and previ-
ous arrivals can be used.

As mentioned above, we use the tools of proba-
bilistic analysis, as well as computational testing,
to characterize the performance of these heuris-
tics under various conditions. In this type of
analysis, we consider a sequence of randomly
generated deterministic instances of the prob-
lem, and characterize the objective values result-
ing from applying a heuristic to these instances
as the size of the instances (the number of jobs)
grows to infinity. For this probabilistic analy-
sis, we generate problem instances as follows.
Each job has independent probability Pl of be-
ing job type l, where

∑k
l=1 Pl = 1 and job type

l has known processing time pl. Arrival times
are determined by generating inter-arrival times
drawn from identical independent distributions
bounded above by some constant, with expected
value ET .
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The orders need to be processed on a single
machine without preemption and no job can be-
gin processing before its arrival time. Let Ci be
the completion time of the order i. For each job,
the producer incurs a cost of cd

i = cd ∗ di, where
where cd is the unit cost of the quoted due date
and a lateness cost of cL

i = cL ∗ [Ci − di]
+ for or-

der i if the order completes processing after its
assigned due date, where cL is the unit lateness
cost. We assume that cL > cd; otherwise, setting
all due dates equal to 0 will be optimal.

The objective of this problem is thus to deter-
mine a sequence of jobs and a set of due dates
such that the total cost=

∑n
i=1(c

d
i + cL

i ) is min-
imized.

2.2 The Heuristic: Any algorithm for this
problem has to do two things: quote due dates
for each job, and sequence jobs for processing.
The heuristic we propose, SPTA-SL, is based
on sequencing the jobs according to the Shortest
Processing Time Available (SPTA) rule. Under
the SPTA heuristic, each time a job completes
processing, the shortest available job which has
yet not been processed is selected for processing.
Note that this approach to sequencing does not
take quoted due date into account, and is thus
easily implemented.

Instead, the due date quotation rule takes
the sequencing rule into account. To quote due
dates, we maintain an ordered list of jobs that
have been released and are waiting to be pro-
cessed. In this list, jobs are sequenced in in-
creasing order of processing time, so that the
shortest job is at the head of the list. Since we
are sequencing jobs SPTA, when a job completes
processing, the first job on the list is processed,
and each job moves up one position in the list.
When a job i arrives at the system at its release

time ri with processing time pi and the system
is empty, it immediately begins processing and
a due date equal to its release time plus its pro-
cessing time is quoted:

di = ri + pi

However, if the system is not empty when a job
i arrives, it is inserted into the appropriate place
in the waiting list. Let ri be the release time
of job i, rti be the remaining time of the job
in process at the time of arrival i, pos[i] be the
position of job i in the waiting list and list[i] be
the index of the ith job in the waiting list. Then,
a due date is quoted for this job i as follows:

di = ri + rti +

pos[i]∑

j=1

(plist[j]) + slacki (0.1)

where slacki is some additional time added to
the due date in order to account for future ar-
rivals before this job is processed with processing
times less than this job – these are the jobs that
will be processed ahead of this job, and cause a
delay in its completion time. The remainder of
this subsection focuses on determining an appro-
priate value for slacki. In the next section, we
analytically demonstrate the effectiveness of the
SPTA-SL approach.

Define the minwait time when a job arrives to
be the remaining time of the job in process plus
the total processing times of all of the jobs to be
processed ahead of this arrival, so that

minwaiti = rti +

pos[i]−1∑

j=1

(plist[j]).

Now, the slack for job i is calculated as follows,
assuming a problem instance of size n.

Let prl be the probability that an arriving job
has processing time less than pl. For job types
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li and lj , assume without loss of generality that
pli ≤ plj if and only if li ≤ lj . So, for a job type
l,

prl = Pr{p < pl} =
l−1∑

j=1

Pj l = 2, 3...k

and
pr1 = 0.

Also, let EPl the expected processing time of a
job given that it is less than pl,

EPl = E[p|p < pl] =
l−1∑

j=1

Pj ∗ pj .

and let EA(t) = t
ET

be the expected number of
arrivals during a time interval of length t.

Since this is an n job instance, it may be that
all of the jobs have arrived before job i is pro-
cessed. So, we need to consider two cases ac-
cording to the value of the total expected arrivals
before job i is processed.

Let Ai
1 be the expected number of all arrivals

during the minwait time for job i of type l. So,
Ai

1 = EA(minwaiti)Then multiplying it with
prl gives us the expected number of new arrivals
that will be placed in front of job i. These ar-
rivals will add an additional expected waiting
time of

si
1 = Ai

1 ∗ prl ∗ EPl.

Of course, during this time, some new addi-
tional jobs will also arrive; let Ai

2 = EA(si
1) rep-

resent the number of these additional jobs and
si
2 = Ai

2 ∗prl ∗EPl will be the expected duration
of the jobs among Ai

2 that will be placed in front
of job i.

More additional jobs may arrive while these
jobs are processed. Thus, we need to determine

the total number of jobs that are expected to ar-
rive assuming that we have an infinite source of
arriving jobs, instead of only n jobs, and com-
pare it with the remaining number of jobs, n− i.
Applying the same logic as above, we estimate
the expected number of total arrivals :

TAi =
∞∑

j=1

(Ai
j)

where Ai
j = EA(si

j−1), si
j = Ai

j ∗ prl ∗ EPl for

j = 1, 2, ...k and si
0 = minwaiti.

Starting from Ai
1 and si

1 and writing the equa-
tions dynamically, we see that:

Ai
j =

minwaiti(prl)
j−1(EPl)

j−1

ET j

and

TAi =
∞∑

j=1

minwaiti(prl)
j−1(EPl)

j−1

ET j
.

If prl∗EPl

ET
≥ 1 then this sum grows to infinity,

which implies that all of the remaining jobs are
expected to arrive to the system before job i goes
into process. So, in this case, instead set TAi =
n − i.

If prlEPl

ET
< 1, then

TAi =
∞∑

j=1

minwaitipr
j−1
l EP

j−1
l

ET j
=

minwaiti

ET − prlEPl

Of course, even in this case it is possible that
minwaiti

ET−prl∗EPl
might be greater than the number of

remaining jobs, n − i, again implying that the
total expected number of arrivals TAi = n − i.

Then, we quote the slack according to the fol-
lowing formula:

slacki = TAi ∗ prl ∗ EPl
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We summarize the due date quotation rule for
job i of type l as follows:

If prl∗EPl

ET
≥ 1

slacki = (n − i) ∗ prl ∗ EPl

else

slacki = min{
minwaitiprlEPl

ET − prlEPl

, (n − i)prlEPl}

(0.2)
and given this slack, we quote the following due
date:

di = ri + minwaiti + pi + slacki.

2.3 Analysis and Results For sets of ran-
domly generated problem instances as described
in preceding sections, let ZSPTA−SL

n represent
the objective function value obtained by apply-
ing the SPTA-SL rule for an n, and let Z∗

n be
the optimal objective function value for that in-
stance. In this section, we prove

Theorem 1. Consider a series of randomly gen-
erated problem instances meeting the require-
ments described above. Almost surely,

lim
n→∞

ZSPTA−SL
n − Z∗

n

Z∗
n

= 0

In other words, SPTA-SL is asymptotically
optimal for this problem.

To prove this theorem, we utilize a series of
preliminary results and observations. First, we
consider a feasible schedule for an instance of
this problem, and define a chain to be a series
of jobs processed consecutively without idle time
between them, but with idle time before and af-
ter the series begins processing. Now consider
the following:

Observation 1. Consider any two non-delay
schedules on a single machine. Number the
chains consecutively in both of the sched-
ules.There will be the same number of chains in
both sequences and the kth chain in either se-
quence will contain exactly the same jobs and
will start and end at exactly the same time on
the machine.

We consider two cases, depending on the re-
lationship between the expected processing and
expected interarrival times, EP and ET.

Case 1: EP < ET

For this case, Gazmuri [19] proved the follow-
ing lemma:

Lemma 1. Consider a single machine prob-
lem. Let interarrival times T1, T2, ..., Tn−1 (Ti =
ri+1 − ri) be i.i.d. random variables, bounded
above by some constant, where T is a generic
random variable representing an interarrival
time; the processing times p1, p2, ..., pn be i.i.d
random variables, bounded above by some con-
stant, where p is a generic random variable rep-
resenting a processing time; the processing times
and interarrival times be independent of each
other, and let EP < ET .

Then if M is a random variable representing
the number of jobs in a chain, E(M) and E(M2)
are bounded by constants that are independent of
n.

Now, let lk be the chain index, and let N(n)
and Mk be the number of chains in an n job in-
stance and the number of jobs in chain k, respec-
tively. In the following discussion, we consider a
single chain, and index 1,2...Mk in chain k. For
each chain, let ZSPTA−SL

lk
and Z∗

lk
be that por-

tion of the objective function from jobs in the
chain. Then

Proceedings of 2005 NSF DMII Grantees’ Conference, Scottsdale, Arizona Grant #DMI-0092854



ZSPTA−SL
lk

−Z∗
lk

=

Mk∑

i=1

(cddi +cL(Ci−di)
+)−Z∗

lk

(0.3)
or summing over all chains, and reverting to orig-
inal indexing:

ZSPTA−SL
n −Z∗

n =
n∑

i=1

(cddi + cL(Ci −di)
+)−Z∗

n

(0.4)

We now bound both the “lateness” and the
“due date” portions of this quantity.

Observe that for each chain k, a job can’t be
late by more than the length of that chain since
the release time of any job in a chain is at least
as big as the start time of the chain, we set a due
date greater than the release time of job, and the
job completes by the end of the chain. Thus,

Ci − di ≤ Mkpmax

and

Mk∑

i=1

cL(Ci − di)
+ ≤ cLMk(Mkpmax)

Summing this quantity over all chains, we get:

n∑

i=1

cL(Ci − di)
+ ≤

N(n)∑

k=1

cLM2
kpmax

Next, we focus on the maximum difference be-
tween the optimal objective value and the due
date cost related portion of the heuristic objec-
tive function value.

Clearly, a job’s earliest possible due date in
the optimal schedule is equal to that job’s release

date, plus its processing time. Also, recall that
due dates are set according to the formula di =
ri + minwaiti + pi + slacki, so that an upper
bound on the difference between the due date
cost in the heuristic solution, and the total cost
in the optimal solution, is:

Mk∑

i=1

(cddi) − Z∗
lk
≤

Mk∑

i=1

cd(slacki + minwaiti)

(0.5)
Now, recall the quantity minwaiti, the min-

imum time that job i will wait before process-
ing under algorithm SPTA-SL if there is no
inserted slack time. Clearly, minwaiti is also
smaller than the length of its chain because when
job i arrives, minwaiti can be no longer than the
processing time of all waiting jobs, which is no
greater than the length of the chain. Thus,

minwaiti ≤ Mkpmax (0.6)

Summing over all the jobs in the chain, we get:

Mk∑

i=1

minwaiti ≤ M2
kpmax (0.7)

Also, since since EP < ET and pri ≤ 1, from
(0.2),

slacki = min{
minwaitiprlEPl

ET − prlEPl

, (n − i)prlEPl}

slacki ≤
minwaitiprlEPl

ET − prlEPl

≤ minwaiti
EP

ET − EP

or, if we define U = EP
ET−EP

, and apply (0.6),
then

slacki ≤ MkpmaxU (0.8)
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Summing over all the jobs in the chain, we get

Mk∑

i=1

slacki ≤ M2
k ∗ pmax ∗ U (0.9)

Substituting (0.7) and (0.9) into (0.5), we get:

Mk∑

i=1

(cddi) − Z∗
lk

≤ cd(M2
kpmaxU + M2

kpmax)

≤ (cd + Ucd)M2
kpmax (0.10)

Summing over the N(n) chains, and substitut-
ing into (0.4) ,

ZSPTA−SL
n − Z∗

n =

N(n)∑

i=1

(cd + Ucd + cL)M2
kpmax

Dividing by n2 and multiplying and dividing
by N(n), we get:

ZSPTA−SL
n − Z∗

n

n2
≤ (cd + cdU + cL)pmax

∗
N(n)

n2
∗

∑N(n)
k=1 M2

k

N(n)

Also, note that the following hold almost
surely.

lim
n→∞

n

N(n)
= E(M)

lim
n→∞

∑N(n)
k=1 (M2

k )

N(n)
= E(M2)

Taking the limit as the number of jobs goes to
infinity, and substituting:

lim
n→∞

ZSPTA−SL
n − Z∗

n

n2
≤

lim
n→∞

(cd + cdU + cL)pmaxE(M2)

E(M)n

= 0 (0.11)

Case 2: EP ≥ ET

For this case, we consider the asymptotic dif-
ference between the heuristic and optimal solu-
tions, and begin this part of the proof by adding
and subtracting the value

∑n
i=1 cd ∗ CSPTA

i ,
where CSPTA

i denotes the completion time of job
i within the SPTA sequence. Also, C∗

i denotes
the completion time of job i with the optimal
sequence.

lim
n→∞

ZSPTA−SL
n − Z∗

n

n2
=

lim
n→∞

∑n
i=1 cddi + cL[CSPTA−SL

i − di]
+ − cdC∗

i

n2
=

lim
n→∞

∑n
i=1 cddi − cd

∑n
i=1 CSPTA

i + cd
∑n

i=1 CSPTA
i

n2

+ lim
n→∞

∑n
i=1 cL[CSPTA−SL

i − di]
+ −

∑n
i=1 cdC∗

i

n2

(0.12)

It is known (see Kaminsky and Simchi-Levi
(2001)) that SPTA is asymptotically optimal for
minimizing total completion time of a single ma-
chine problem under the conditions considered
in this paper. Thus, we can write the following
lemma.
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Lemma 2. For a series of randomly generated
problem instances meeting the requirements de-
scribed above, almost surely,

lim
n→∞

cd
∑n

i=1 CSPTA
i −

∑n
i=1 cdC∗

i

n2
= 0

Now, recall that the algorithm SPTA-SL se-
quences jobs in SPTA order, let SSPTA

n be the
sum of completion times of all jobs sequenced
according to SPTA in an n job instance, and
let SSPTA−SL

n be the total cost of all due dates,∑n
i=1 cd

i =
∑n

i=1 cddi. To prove our final result,
we employ the following Lemma:

Lemma 3. Consider a series of randomly gener-
ated problem instances meeting the requirements
described above. Almost surely,

lim
n→∞

SSPTA−SL
n − SSPTA

n

SSPTA
n

=

lim
n→∞

cd

∑n
i=1 di − CSPTA

i

n2
= 0

Proof. For any job i, let Ã
j
i be the number of

jobs of type j that arrived after ri but before job
i of type l started processing. By SPTA, these
jobs will be processed before job i. It is easy to
see that in the SPTA sequence, for a job of type
l ≥ 2,

Ci = ri + minwaiti + pl +
l−1∑

j=1

Ã
j
i ∗ pj

and for a job of type 1

Ci = ri + minwaiti + p1.

Now we divide the job types into two sets. For
an n job problem instance, all jobs of type l such
that ET − EPl ∗ prl ≤ 0 are in set Bn

1 , and all

jobs of type l such that ET − EPl ∗ prl > 0 are
in Bn

2 .
For all jobs in Bn

1 , the quoted due date will be

di = ri + minwaiti + pl + (n − i) ∗ prl ∗ EPl.

Similarly, for all jobs in Bn
2 , the quoted due date

will be:

di = ri + minwaiti + pl

+min{(n − i)prlEPl,
minwaitiprlEPl

ET − EPlprl

}

Summing over all jobs and taking the limit as
the number of jobs goes to infinity, a.s. we get:

lim
n→∞

SSPTA−SL
n − SSPTA

n

n2

= lim
n→∞

cd
∑n

i=1 di − CSPTA
i

n2

= lim
n→∞

cd
∑2

j=1

∑
i∈Bn

j
di − CSPTA

i

n2

(0.13)

Now, we consider the Bn
1 and Bn

2 jobs sepa-
rately. Let Sl denote the set of type l jobs in
Bn

1 , and thus, for the Bn
1 jobs,

lim
n→∞

cd
∑

i∈Bn
1

di − CSPTA
i

n2
=

lim
n→∞

cd
∑

i∈Bn
1

[(n − i)prlEPl −
∑l−1

j=1 Ã
j
ipj ]

n2
=

lim
n→∞

cd
∑k

l=1

∑
i∈Sl

[(n − i)prlEPl −
∑l−1

j=1 Ã
j
ipj ]

n2

So, for all type l jobs,

lim
n→∞

∑
i∈Sl

di − CSPTA
i

n2
=

lim
n→∞

∑
i∈Sl

[(n − i)prlEPl −
∑l−1

j=1 Ã
j
ipj ]

n2
=
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lim
n→∞

|Sl|EPlprl

n
−

∑
i∈Sl

(iprlEPl −
∑l−1

j=1 Ã
j
ipj)

n2

= PlEPlprl − lim
n→∞

∑
i∈Sl

(iprlEPl + ÃiEPl)

n2

(0.14)

by using the facts that, limn→∞
|Sl|
n

= Pl al-

most surely and limÃi→∞

∑l−1

j=1
Ã

j
i pj

Ãi
= EPl a.s.

where Ãi =
∑l−1

j=1 Ã
j
i

We also use the following lemma to prove our
result.

Lemma 4. For the values described above, al-
most surely, the following holds.

lim
n→∞

∑
i∈Sl

iprl + Ãi

n2
= prlPl

Proof. Since i ∗ prl is the expected number of
jobs with processing time less than pi that ar-
rived before job i and Ãi is the number of jobs
with processing time less than pi that arrived
after ri while job i is waiting in the queue to
be processed, (i ∗ prl + Ãi) denotes the num-
ber of jobs with processing time less than pi

that arrived before job i goes into service. Since
ET − EPl ∗ prl ≤ 0 ⇒ ET

prl
≤ EPl, it is expected

that all n jobs will arrive to the system before
job i of type l is processed and n ∗ prl of them is
expected to be located before job i, that is

lim
n→∞

∑
i∈Sl

i ∗ prl + Ãi

n2
= lim

n→∞

∑
i∈Sl

n ∗ prl

n2

= lim
n→∞

|Sl| ∗ prl

n
= prl ∗ Pl

By employing this lemma, we can write equa-
tion 0.14 as:

lim
n→∞

∑
i∈Sl

di − CSPTA
i

n2

= PlEPlprl − lim
n→∞

∑
i∈Sl

(iprlEPl + ÃiEPl)

n2

= Pl ∗ EPl ∗ prl − Pl ∗ EPl ∗ prl = 0 (0.15)

Then, if we add all types of jobs and multiply
with cd, we get:

lim
n→∞

cd
∑

i∈Bn
1

di − CSPTA
i

n2
=

lim
n→∞

cd
∑k

l=1

∑
i∈Sl

di − CSPTA
i

n2
= 0

(0.16)

Now, for the jobs in Bn
2 where ET − EPl ∗

prl > 0 for a job type l, the quoted slack will be
min{(n − i) ∗ prl ∗ EPl,

minwaiti∗prl∗EPl

ET−EPl∗prl
}.

Let F denote the time of the last job arrival
to the system, such that no more jobs will arrive
after that point. Then we can divide the jobs in
Bn

2 into four groups according to the quoted due
dates and actual completion times of the jobs.
For an n job problem instance,

1. Dn
1 denotes the set of jobs where the quoted

slack for a job i of type l is slacki = (n −
i)∗prl ∗EPl and the actual completion time
for that job satisfies Ci ≥ F .

2. Dn
2 is the set of jobs where the quoted

slack for a job i of type l is slacki =
minwaiti∗prl∗EPl

ET−EPl∗prl
and Ci ≤ F .

3. Dn
3 is the set of jobs where the quoted

slack for a job i of type l is slacki =
minwaiti∗prl∗EPl

ET−EPl∗prl
and Ci ≥ F .
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4. Dn
4 denotes the set of jobs where the quoted

slack for a job i of type l is slacki = (n −
i) ∗ prl ∗ EPl and Ci ≤ F .

Then we can write:

lim
n→∞

cd
∑

i∈Bn
2

di − CSPTA
i

n2
=

lim
n→∞

cd
∑4

j=1

∑
i∈Dn

j
di − CSPTA

i

n2
(0.17)

For each of these cases, we can write the fol-
lowing:

1. For the jobs in Dn
1 , let Sl denote the set of

type l jobs in Dn
1 . Then,

lim
n→∞

∑
i∈Dn

1

di − CSPTA
i

n2
=

lim
n→∞

∑k
l=1

∑
i∈Sl

di − CSPTA
i

n2
(0.18)

For each job type l, we can write,

lim
n→∞

∑
i∈Sl

di − CSPTA
i

n2
=

lim
n→∞

∑
i∈Sl

((n − i)prlEPl −
∑l−1

j=1 Ã
j
ipj)

n2
=

lim
n→∞

|Sl|prlEPl

n
−

∑
i∈Sl

(iprl + Ãi)EPl

n2

(0.19)

Since Ci ≥ F for all jobs i in Dn
1 , almost

surely

lim
n→∞

Ãi

n
= lim

n→∞

(n − i) ∗ prl

n

⇒ lim
n→∞

Ãi + i ∗ prl

n
= lim

n→∞

n ∗ prl

n

⇒ lim
n→∞

∑
i∈Sl

(i ∗ prl + Ãi)

n
= |Sl| ∗ prl

Substituting into equation 0.19, we get:

lim
n→∞

∑
i∈Sl

di − CSPTA
i

n2
=

lim
n→∞

|Sl| ∗ prl ∗ EPl

n
−

|Sl| ∗ prl ∗ EPl

n
= 0

(0.20)

Summing over all job types:

lim
n→∞

∑
i∈Dn

1

di − CSPTA
i

n2
=

lim
n→∞

∑k
l=1

∑
i∈Sl

di − CSPTA
i

n2
= 0

(0.21)

2. For the jobs in Dn
2 , let Sl denote the set of

type l jobs in Dn
2 . Then,

lim
n→∞

∑
i∈Dn

2

di − CSPTA
i

n2
=

lim
n→∞

∑k
l=1

∑
i∈Sl

di − CSPTA
i

n2

(0.22)

Then, for each job type l, we have

lim
n→∞

∑
i∈Sl

di − CSPTA
i

n2
=

lim
n→∞

∑
i∈Sl

(minwaitiprlEPl

ET−EPlprl
−

∑l−1
j=1 Ã

j
ipj)

n2
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= lim
n→∞

∑
i∈Sl

minwaitiprlEPl

(ET − EPlprl)n2
−

lim
n→∞

∑
i∈Sl

(ET − EPlprl)
∑l−1

j=1 Ã
j
ipj

(ET − EPlprl)n2

= lim
n→∞

∑
i∈Sl

(minwaiti +
∑l−1

j=1 Ã
j
ipj)

(ET − EPlprl)n2
−

lim
n→∞

∑
i∈Sl

ET
prlEPl

∑l−1
j=1 Ã

j
ipj

(ET − EPlprl)n2

= lim
n→∞

∑
i∈Sl

(minwaiti +
∑l−1

j=1 Ã
j
ipj)

(ET − EPlprl)n2
−

lim
n→∞

∑
i∈Sl

ETEPlÃi

prlEPl

(ET − EPlprl)n2
(0.23)

Since Ci = ri + minwaiti + pi +
∑l−1

j=1 Ã
j
ipj ,

Ci − ri − pi = minwaiti +
l−1∑

j=1

Ã
j
ipj (0.24)

where Ci−ri−pi is the time interval between
the release time and the service start time
of job i.

Also, since Ci ≤ F and Ãi is the number
of jobs that arrived during this time with

processing time less than pi,
Ãi

prl
denotes the

expectation of total number of jobs that ar-

rived during that time and ET∗Ãi

prl
denotes

the expected length of that time interval.
So, we can write almost surely that:

lim
n→∞

∑
i∈Sl

Ci − ri − pi

n2
= lim

n→∞

∑
i∈Sl

ETÃi

prl

n2

(0.25)

Then, if we combine equations 0.24 and 0.25
and substitute into equation 0.23, we get:

lim
n→∞

∑
i∈Sl

di − CSPTA
i

n2
=

lim
n→∞

∑
i∈Sl

ETÃi

prl

(ET − EPlprl)n2
−

∑
i∈Sl

ETÃi

prl

(ET − EPlprl)n2
= 0

(0.26)

Summing over all job types:

lim
n→∞

∑
i∈Dn

2

di − CSPTA
i

n2
=

lim
n→∞

∑k
l=1

∑
i∈Sl

di − CSPTA
i

n2
= 0

(0.27)

3. For the jobs in Dn
3 , let Sl denote the set of

type l jobs in Dn
3 . Then,

lim
n→∞

∑
i∈Dn

3

di − CSPTA
i

n2
=

lim
n→∞

∑k
l=1

∑
i∈Sl

di − CSPTA
i

n2

(0.28)

For each job type l, we can write,

lim
n→∞

∑
i∈Sl

di − CSPTA
i

n2
=

lim
n→∞

∑
i∈Sl

(minwaitiprlEPl

ET−EPlprl
−

∑l−1
j=1 Ã

j
ipj)

n2

(0.29)

Since slacki = minwaitiprlEPl

ET−EPlprl
,
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minwaitiprl

ET − EPlprl

< (n − i)prl

⇒ minwaiti + (n − i)prlEPl < (n − i)ET

⇒ lim
n→∞

ri + minwaiti + (n − i)prlEPl

n

≤ lim
n→∞

ri + (n − i)ET

n
(0.30)

Since Ci ≥ F , all of the jobs will have ar-
rived before job i completes processing. So,

we can write, almost surely, limn→∞
Ãi

n
=

limn→∞
(n−i)∗prl

n
. Then, the completion

time of a job i of type l is a.s.:

lim
n→∞

Ci

n
=

lim
n→∞

ri + minwaiti + pi +
∑l−1

j=1 Ã
j
ipj

n
=

lim
n→∞

ri + minwaiti + (n − i)prlEPl

n
(0.31)

Also, observe the following about the value
of F with respect to the release time of job
i:

lim
n→∞

F

n
= lim

n→∞

ri + (n − i)ET

n
(0.32)

Substituting equation 0.31 and 0.32 into
equation 0.30, we get:

lim
n→∞

Ci

n
≤ lim

n→∞

F

n

However, we also know that, for job i in
Dn

3 , Ci ≥ F . Thus, we have the following
lemma:

Lemma 5. The number of jobs in set Sl,
that satisfies the above relations, almost
surely satisfies the following:

lim
n→∞

|Sl|

n
= 0

Proof. Since F is a single time point, if
Ci ≥ F and limn→∞

Ci

n
≤ limn→∞

F
n

holds
at the same time, then Ci should satisfy the
following relation Ci = F + K where K is a
constant independent of n. So, the number
of such jobs i, can not depend on n which
gives us the result, limn→∞

|Sl|
n

= 0.

Also, we know that for any job i of type l,
minwaiti ≤ n ∗ pmax and

∑l−1
j=1 Ã

j
i ∗ pj ≤

n ∗ pmax. Then we can write the following
inequalities:

lim
n→∞

∑
i∈Sj

minwaitiprlEPl

ET−EPlprl

n2
≤

lim
n→∞

|Sj |npmaxprlEPl

(ET − EPlprl)n2
= 0

(0.33)

and

lim
n→∞

∑
i∈Sj

∑l−1
j=1 A

j
ipj

n2
≤ lim

n→∞

n|Sj |pmax

n2
= 0

(0.34)

Combining these results with equation 0.29:

lim
n→∞

∑
i∈Sl

di − CSPTA
i

n2
=

lim
n→∞

∑
i∈Sl

(minwaitiprlEPl

ET−EPlprl
−

∑l−1
j=1 Ã

j
ipj)

n2

= 0 (0.35)
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Summing over all job types:

lim
n→∞

∑
i∈Dn

3

di − CSPTA
i

n2
=

lim
n→∞

∑k
l=1

∑
i∈Sl

di − CSPTA
i

n2
= 0

(0.36)

4. For the jobs in Dn
4 , let Sl denote the set of

type l jobs in Dn
4 . Then,

lim
n→∞

∑
i∈Dn

4

di − CSPTA
i

n2
=

lim
n→∞

∑k
l=1

∑
i∈Sl

di − CSPTA
i

n2
(0.37)

For each job type l, we can write,

lim
n→∞

∑
i∈Sl

di − CSPTA
i

n2
=

lim
n→∞

∑
i∈Sl

((n − i)prlEPl −
∑l−1

j=1 Ã
j
ipj)

n2

(0.38)

Since slacki = (n − i)prlEPl, we have that

minwaitiprl

ET − EPlprl

> (n − i)prl

⇒ minwaiti > (n − i)(ET − prlEPl)

(0.39)

However, since ET − EPl ∗ prl > 0, we can
say that almost surely minwaiti < K for
some constant K < ∞, that is, the queue
length in front of job i will almost surely be
finite.

Then, we can write the following lemma
about the number of jobs in Dn

4 .

Lemma 6. The number of jobs in set Sl

that satisfies the above relations, almost
surely satisfies the following:

lim
n→∞

|Sl|

n
= 0

Proof. Since there exists K < ∞ s.t.
minwaiti < K and also minwaiti > (n −
i)(ET − prlEPl), (n − i) will be finite, the
number of such jobs i is finite.

Also, we know that for any job i of type l,∑l−1
j=1 Ã

j
ipj ≤ npmax. Then we can write the

following equations

lim
n→∞

∑
i∈Sl

(n − i)prlEPl

n2
≤

lim
n→∞

|Sl|nprlEPl

n2
= 0 (0.40)

and

lim
n→∞

∑
i∈Sl

∑j−1
j=1 Ã

j
ipj

n2
≤ lim

n→∞

n|Sl|pmax

n2
= 0

(0.41)

So, substituting into our original equation
0.38:

lim
n→∞

∑
i∈Sl

di − CSPTA
i

n2
=

lim
n→∞

∑
i∈Sl

((n − i)prlEPl −
∑l−1

j=1 Ã
j
ipj)

n2
= 0

Summing over all job types:

lim
n→∞

∑
i∈Dn

4

di − CSPTA
i

n2
=

lim
n→∞

∑k
l=1

∑
i∈Sl

di − CSPTA
i

n2
= 0

(0.42)
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Substituting all the results 0.21, 0.27, 0.36
and 0.42 into equation 0.17 and combining
it with equation 0.16, we get

lim
n→∞

SSPTA−SL
n − SSPTA

n

SSPTA
n

= lim
n→∞

cd
∑2

j=1

∑
i∈Bn

j
di − CSPTA

i

n2

= lim
n→∞

cd
∑

i∈Bn
1

di − CSPTA
i

n2
+

lim
n→∞

cd
∑4

j=1

∑
i∈Dn

j
di − CSPTA

i

n2
= 0

(0.43)

To complete this part, we need to consider the
tardiness portion of equation 0.12. When we
consider only the tardy jobs, we can write the
following Lemma:

Lemma 7. For a series of randomly generated
problem instances meeting the requirements de-
scribed above, almost surely

lim
n→∞

∑n
i=1 cL[CSPTA−SL

i − di]
+

n2
= 0

Proof. The proof follows the proof of Lemma
3. For Lemma 3, we have already proven that

lim
n→∞

∑n
i=1 di − CSPTA

i

n2
= 0

Similarly, we can follow similar steps but sum
exclusively over tardy jobs, rather than over all
jobs. Then one can show that

lim
n→∞

∑
i∈Lj

cL ∗ (CSPTA−SL
i − di)

n2
= 0

where Lj is the set of late jobs.

Finally, by combining Lemmas 2, 3 and 7, we
prove Theorem 1.

lim
n→∞

ZSPTA−SL
n − Z∗

n

n2
= 0 (0.44)

3. The Supply Chain Models Utilizing our
analysis of the single stage model discussed in
the previous section, in subsequent work we will
consider two parties, a supplier and a manufac-
turer, working to satisfy customer orders. Cus-
tomer order i, i = 1, 2, come to the manufacturer
at arrival time(release time) ri and the manufac-
turer quotes each customer a due date di at the
arrival of the order. The release times are not
known in advance and they are drawn from a cer-
tain probabilistic distribution. To complete the
processing and to deliver the product to the cus-
tomer, the manufacturer requires materials from
the supplier, and orders these materials from the
supplier at the time of customer order arrival.
The processing time of an order i at the supplier
is denoted by p1

i . Then, in a flow shop setting, as
soon as an order is completed at the supplier, it is
moved to the manufacturer, where it requires p2

i

time units to complete processing. The process-
ing times p1

i and p2
i are known at the arrival of

the order. The orders are processed both at the
supplier and the manufacturer on a single ma-
chine without preemption, and no job can begin
processing before its arrival time. The materials
are sent to the manufacturer as soon as they are
completed at the supplier and the orders are de-
livered to the customers as soon as they complete
processing.

The objective of this research will be to deter-
mine a simple and asymptotically optimal online
schedule and due date quotation heuristic for the
manufacturer and the supplier to minimize the
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total cost function
∑n

i=1 (cd ∗ di + cL ∗ Li) where
Li = (Ci − di)

+ is the tardiness of job i and cd

and cL are the unit due date and tardiness costs
where cl > cd. This research will utilize the re-
sults developed in the previous sections of this
paper.

Our goal is to develop effective approaches
for scheduling and due date quotation for both
the centralized and decentralized versions of this
model, so that we can investigate the relative
advantage of a centralized system under various
conditions. To do this, we intend to focus on
three models.

• In the Centralized Model, we model the
system as a two facility flow shop model.
It is assumed that the manufacturer and
the supplier works as a single entity and
they are both controlled by the same agent.
The decisions about the scheduling of the
jobs at both facilities and due date set-
ting for the customer are made by this
agent. The objective in this model is to
quote the due dates so that the cost function∑n

i=1 (cd ∗ di + cL ∗ Li) is minimized for the
whole system. It is assumed that in the cen-
tralized case, the mean of the distribution of
order interarrival times and the mean pro-
cessing times at both the manufacturer and
the supplier are known by the agent. How-
ever, the actual interarrival and processing
times are not known until the arrival of that
order to the system.

• In the Simple Decentralized Model, we
intend to consider the possibility that the
manufacturer and the supplier work inde-
pendently, and that they both try to min-
imize their own costs. When the customer
comes to the manufacturer and places the

order, the manufacturer immediately quotes
a due date, but the manufacturer has no
knowledge of the suppliers operation. He
doesn’t know the process time of jobs at the
supplier, or the schedule of the supplier. We
assume that the manufacturer only knows
the mean interarrival time of orders and
mean processing time of the jobs at the sup-
plier and at his own facility. Also, he knows
the number of jobs at the supplier, since this
quantity is equal to the number of orders ar-
rived to the manufacturer minus the number
of orders the supplier finished and sent to
the manufacturer. The manufacturer there-
fore has to quote the due dates to the cus-
tomers without knowing the schedule at the
supplier and thus without knowing when the
raw materials for that order will arrive to
him from the supplier.

In this decentralized case, we will consider
the problem from the manufacturer side,
since he quotes due dates to the customer,
and we will attempt to find an effective
scheduling rule and a due date quotation
heuristic for the manufacturer to minimize
the total cost.

• In the Decentralized Model with Ad-

ditional Information Exchange, we will
consider another version of the decentral-
ized case in which the manufacturer has
more information about the supplier, and
thus can quote more effective due dates.
In this case, we will assume that the sup-
plier also sets a due date for the comple-
tion time of jobs at his site. When a cus-
tomer order arrives, the manufacturer asks
when the supplier will deliver the raw ma-
terials to him and the manufacturer uses
this information to set due dates for his cus-
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tomers. However, the manufacturer doesn’t
know what schedule the supplier uses, and
thus the manufacturer can only use the due
date quoted by the supplier as additional
information.

For each of these models, we will focus on de-
veloping effective heuristics for scheduling and
due date quotation for these models, and ana-
lytically characterizing the effectiveness of these
heuristics. In particular, building on the re-
sults described in section , we will use the tools
of probabilistic analysis, as well as computa-
tional testing, to characterize performance of
these heuristics under various conditions. Fi-
nally, we will analytically and computationally
compare the various models, to assess the ben-
efit of cooperative due date quotation in make-
to-order supply chains.

References

[1] Cheng, T.C.E. and M.C. Gupta (1989),
Survey of Scheduling Research Involv-
ing Due Date Determination Decisions.
European Journal of Operational Re-
search 38, pp. 156-166.

[2] Eilon, S. and I.G. Chowdhury (1976),
Due Dates in Job Shop Scheduling. In-
ternational Journal of Production Re-
search 14, pp. 223-237.

[3] Weeks, J.K. (1979), A Simulation Study
of Predictable Due-Dates. Management
Science 25, pp. 363-373.

[4] Miyazaki, S. (1981), Combined Schedul-
ing System for Reducing Job Tardiness
in a Job Shop. International Journal of
Production Research 19, pp. 201-211.

[5] K.R. Baker and J.W.M. Bertrand
(1981), A Comparison of Due-Date Se-
lection Rules. AIIE Transactions 13,
pp. 123-131.

[6] Bertrand, J.W.M. (1983), The Effect of
Workload Dependent Due-Dates on Job
Shop Performance. Management Sci-
ence 29, pp. 799-816.

[7] Brucker, P. (1998), Scheduling Algo-
rithms. Springer, New York.

[8] Kahlbacher, H. (1992), Termin-und
Ablaufplanung - ein analytischer Zu-
gang, Ph.D. thesis, University of Kaiser-
slautern, cited in [7]

[9] Panwalkar, S.S., M.L. Smith, and A.
Seidmann (1982), Common Due Date
Assignment to Minimize Total Penalty
for the One Machine Scheduling Prob-
lem. Operations Research 30, pp. 391-
399.

[10] Hall, N.G. and M.E. Posner (1991),
Earliness-Tardiness Scheduling Prob-
lems, I: Weighted Deviation of Comple-
tion Times about a Common Due Date.
Operations Research 39, pp. 836-846.

[11] Seidmann, A., S.S. Panwalker, and M.L.
Smith (1981), Optimal Assignment of
Due Dates For a Single Processor Sched-
luing Problem. International Journal of
Production Research 19, pp. 393-399.

[12] Chand, S. and D. Chhajed (1992), A
Single Machine Model for Determina-
tion of Optimal Due Date and Sequence.
Operations Research 40, pp. 596-602.

Proceedings of 2005 NSF DMII Grantees’ Conference, Scottsdale, Arizona Grant #DMI-0092854



[13] Keskinocak, P., R. Ravi, and S. Tayur
(1997), Algorithms for Reliable Lead
Time Quotation. GSIA Working Paper,
Carnegie Mellon University, Pittsburgh,
PA.

[14] Wein, L. M. (1991) Due-date Setting
and Priority Sequencing in a Multi-
class M/G/1 Queue. Management Sci-
ence 37, pp. 834-850.

[15] Duenyas, I. (1995), Single Facility Due
Date Setting with Multiple Customer
Classes. Management Science 41, pp.
608-619.

[16] Duenyas, I and W.J. Hopp (1995),
Quoting Customer Lead Times. Man-
agement Science 41, pp. 43-57.

[17] Spearman, M., and R.Q. Zhang (1999),
Optimal Lead Time Policies. Manage-
ment Science 45, pp. 290-295.

[18] Kaminsky, P. and D. Simchi-Levi
(2001), Probabilistic Analysis of an On-
line Algorithm for the Single Machine
Completion Time Problem with Release
Dates. Operations Research Letters 29

pp. 141-148.

[19] Gazmuri (1985), Probabilistic Analy-
sis of a Machine Scheduling Problem.
Mathematics of Operations Research 10

pp. 328-339.

[20] Xia, C., G. Shanthikumar, and P. Glynn
(2000), On The Asymptotic Optimality
of The SPT Rule for The Flow Shop Av-
erage Completion Time Problem. Oper-
ations Research 48, pp. 615-622.

[21] Kaminsky, P. and D. Simchi-Levi
(1998), Probabilistic Analysis and Prac-
tical Algorithms for the Flow Shop
Weighted Completion Time Problem.
Operations Research, 46, pp. 872-882.

[22] Pinedo, M. (1995), Scheduling: Theory,
Algorithms and Systems, Prentice Hall,
Inc. Englewood Cliffs, New Jersey.

[23] Coffman, E.G., G. N. Frederickson and
G. S. Lueker (1982), Probabilistic Anal-
ysis of the LPT Processor Scheduling
Heuristic. Deterministic and Stochastic
Scheduling, D. Reidel Publishing Com-
pany, M. A. H. Dempster et al. (eds.),
pp. 319-331.

[24] Loulou, R. (1984), Tight Bounds and
Probabilistic Analysis of Two Heuristics
for Parallel Processor Scheduling. Math-
ematics of Operations Research 9, pp.
142-150.

[25] Frenk, J.B.G. and A. H. G. Rinnooy
Kan (1987), The Asymptotic Optimal-
ity of the LPT rule. Mathematics of Op-
erations Research 12, pp. 241-254.

[26] Spaccamela, A.M., W.S. Rhee,
L. Stougie and S. van de Geer (1992),
Probabilistic Analysis of the Minimum
Weighted Flowtime Scheduling Prob-
lem. Operations Research Letters 11,
pp. 67-71.

[27] Webster, S. (1993), Bounds and asymp-
totic results for the uniform parallel pro-
cessor weighted flow time problem. Op-
erations Research Letters, 41, pp. 186-
193.

Proceedings of 2005 NSF DMII Grantees’ Conference, Scottsdale, Arizona Grant #DMI-0092854



[28] Ramudhin, A, J.J. Bartholdi, J. Calvin,
J.H. Vande Vate, and G. Weiss (1996)
A Probabilistic Analysis of 2-Machine
Flowshops. Operations Research 44, pp.
899-908.

[29] Lee, Z.H. and P. Kaminsky (2003) On-
line Algorithms for Due Date Quotation
with Lateness Penalties. Proceedings of
the 2003 NSF Design, Service and Man-
ufacturing Grantees and Research Con-
ference , pp. 3056-3069.

[30] Kaminsky, P and D. Hochbaum (2004)
Due Date Quotation Models and Al-
gorithms. To be published as a chap-
ter in the forthcoming book Handbook
on Scheduling Algorithms, Methods and
Models, Joseph Y. Leung (ed.), Chap-
man Hall/CRC.

[31] Simchi-Levi, D., P. Kaminsky and E.
Simchi-Levi(2004)Managing The Sup-
ply Chain: The Definitive Guide for
the Business Professional, McGraw-Hill
Trade: New York.

[32] Kaminsky, P. and Z-H Lee (2004) Anal-
ysis of On-line Algorithms for Due Date
Quotation. Submitted for publication.

[33] Kaminsky, P. (2003) The Effectiveness
of the Longest Delivery Time Rule for
the Flow Shop Delivery Time Problem.
Naval Research Logistics 50(3) pp. 257-
272

Proceedings of 2005 NSF DMII Grantees’ Conference, Scottsdale, Arizona Grant #DMI-0092854


