
1 23

Journal of Scheduling

ISSN 1094-6136
Volume 16
Number 2

J Sched (2013) 16:161-183
DOI 10.1007/s10951-012-0270-4

A linear programming-based method for
job shop scheduling

Kerem Bülbül & Philip Kaminsky

1 23

Your article is protected by copyright and

all rights are held exclusively by Springer

Science+Business Media, LLC. This e-offprint

is for personal use only and shall not be self-

archived in electronic repositories. If you

wish to self-archive your work, please use the

accepted author’s version for posting to your

own website or your institution’s repository.

You may further deposit the accepted author’s

version on a funder’s repository at a funder’s

request, provided it is not made publicly

available until 12 months after publication.

J Sched (2013) 16:161–183
DOI 10.1007/s10951-012-0270-4

A linear programming-based method for job shop scheduling

Kerem Bülbül · Philip Kaminsky

Published online: 15 February 2012
© Springer Science+Business Media, LLC 2012

Abstract We present a decomposition heuristic for a large
class of job shop scheduling problems. This heuristic uti-
lizes information from the linear programming formulation
of the associated optimal timing problem to solve subprob-
lems, can be used for any objective function whose asso-
ciated optimal timing problem can be expressed as a linear
program (LP), and is particularly effective for objectives that
include a component that is a function of individual opera-
tion completion times. Using the proposed heuristic frame-
work, we address job shop scheduling problems with a vari-
ety of objectives where intermediate holding costs need to be
explicitly considered. In computational testing, we demon-
strate the performance of our proposed solution approach.

Keywords Job shop · Shifting bottleneck · Intermediate
inventory holding costs · Non-regular objective · Optimal
timing problem · Linear programming · Sensitivity
analysis · Single machine · Earliness/tardiness

1 Introduction

The job shop scheduling problem, in which each job in a set
of orders requires processing on a unique subset of available
resources, is a fundamental operations research problem, en-
compassing many additional classes of problems (single-

K. Bülbül (�)
Manufacturing Systems and Industrial Engineering, Sabancı
University, Orhanlı-Tuzla, 34956 Istanbul, Turkey
e-mail: bulbul@sabanciuniv.edu

P. Kaminsky
Industrial Engineering and Operations Research, University
of California, Berkeley, Berkeley, CA, USA
e-mail: kaminsky@ieor.berkeley.edu

machine scheduling, flow shop scheduling, etc.). While
from an application perspective this model is traditionally
used to sequence jobs in a factory, it is in fact much more
general than this, as the resources being allocated can be fa-
cilities in a logistics network, craftsmen on a construction
job site, etc. In light of both the practical and academic im-
portance of this problem, many researchers have focused on
various approaches to solving it. Exact optimization meth-
ods, however, have in general proved effective only for rel-
atively small problem instances or simplified versions of
the problem (certain single-machine and two-machine flow
shop models, for example). Thus, in many cases, researchers
who wish to use approaches more sophisticated than simple
dispatch rules have been motivated to focus on heuristics for
practically sized problem instances, typically metaheuristics
(see Laha 2007 and Xhafa and Abraham 2008 and the ref-
erences therein) or decomposition methods (see Ovacik and
Uzsoy 1996 and the references therein). In almost all of this
work, however, the objective is a function of the completion
time of each job on its final machine, and is not impacted by
the completion times of intermediate operations.

This is a significant limitation because objectives that are
only a function of job completion times rather than a func-
tion of all operation completion times ignore considerations
that are increasingly important as the focus on lean, efficient
supply chains grows. For example, in many cases, interme-
diate inventory holding costs are an important cost driver,
especially when entire supply chains are being modeled. Of-
ten, substantial value is added between processing stages
in a production network, but intermediate products may be
held in inventory for significant periods of time waiting for
equipment to become available for the next processing or
transfer step. Thus, in this case, significant savings may re-
sult from schedules that delay intermediate processing steps
as much as possible. On the other hand, sometimes it makes

Author's personal copy

mailto:bulbul@sabanciuniv.edu
mailto:kaminsky@ieor.berkeley.edu

162 J Sched (2013) 16:161–183

sense for certain intermediate processing steps to be expe-
dited. Consider, for example, processes when steel must be
coated as soon as possible to delay corrosion, or when inter-
mediates are unstable and degrade over time. Indeed, some
supply chains and manufacturing processes may have cer-
tain steps that have to be expedited and other steps that have
to be delayed in order to minimize costs.

Similarly, consider the so-called “rescheduling problem.”
Suppose that a detailed schedule exists, and all necessary ar-
rangements have been made to accommodate that schedule.
When a supply chain disruption of some kind occurs, so that
the schedule has to be changed to account for changing de-
mand or alternate resource availability, the impact of these
changes can often be minimized if the new schedule adheres
as closely as possible to the old schedule. This can be ac-
complished by penalizing operations on machines that start
at different times than those in the original schedule.

In these cases and others, a scheduling approach that con-
siders only functions of the completion time of the job, even
those that consider finished goods inventory holding cost
(e.g., earliness cost) or explicitly penalize deviation from
a targeted job completion time, may lead to a significantly
higher cost solution than an approach that explicitly consid-
ers intermediate holding costs. We refer the reader to Bulbul
(2002) and Bulbul et al. (2004) for further examples and a
more in-depth discussion.

Unfortunately, the majority of previous work in this area
(and of scheduling work in general) focuses on algorithms
or approaches that are specific to an individual objective
function, and are not adaptable to other objective func-
tions in a straightforward way. Because each approach is
highly specialized for a particular objective, it is difficult
for a researcher or user to generalize insights for a partic-
ular approach to other objectives, and thus from an appli-
cation point of view, software to solve scheduling problems
is highly specialized and customized, and from a research
point of view, scheduling research is fragmented. Indeed,
published papers, algorithms, and approaches typically fo-
cus on a single objective: total completion time, flowtime,
or tardiness, for example. It is quite uncommon to find an
approach that is applicable to more than one (or one closely
related set) of objectives.

Thus, there is a need for an effective, general approach
to solve the growing class of scheduling problems that ex-
plicitly considers the completion time of intermediate op-
erations. In this paper we address this need by developing
an efficient, effective heuristic algorithmic framework use-
ful for addressing job shop scheduling problems for a large
class of objectives where operation completion times have a
direct impact on the total cost. To clarify the exposition, we
present our results in the context of explicitly minimizing in-
termediate holding costs, although our approach applies di-
rectly and without modification to other classes of problems

where operation completion times are critical. This frame-
work builds on the notion of the optimal timing problem for
a job shop scheduling problem. For any scheduling problem
where intermediate holding costs are considered, the solu-
tion to the problem is not fully defined by the sequence of
operations on machines—it is necessary to specify the start-
ing time of each operation on each machine, since the time
that each job is idle between processing steps dictates inter-
mediate holding costs. The problem of determining optimal
start times of operations on machines given the sequence
of operations on machines is known as the optimal timing
problem, and for many job shop scheduling problems, this
optimal timing problem can be expressed as an LP.

Specifically, our algorithm applies to any job shop
scheduling problem with operation completion time-related
costs and any objective for which the optimal timing prob-
lem can be expressed as an LP. As we will see, this in-
cludes, but is certainly not limited to, objectives that com-
bine holding costs with total weighted completion time, total
weighted tardiness, and makespan.

Our algorithm is a machine-based decomposition heuris-
tic related to the shifting-bottleneck heuristic, an approach
that was originally developed for the job shop makespan
problem by Adams et al. (1988). Versions of this approach
have been applied to job shop scheduling problems with
maximum lateness (Demirkol et al. 1997) and total weighted
tardiness minimization objectives (Pinedo and Singer 1999;
Singer 2001; Mason et al. 2002). None of these authors con-
sider operation completion time-related costs, however, and
each author presents a version of the heuristic specific to
the objective they are considering. Our approach is gen-
eral enough to encompass all of these objectives (and many
more) combined with operation completion time-related
costs. In addition, we believe and hope that other researchers
can build on our ideas, particularly at the subproblem level,
to further improve the effectiveness of our proposed ap-
proach.

In general, relatively little research exists on multi-
machine scheduling problems with intermediate holding
costs, even those focusing on very specific objectives. Avci
and Storer (2004) develop effective local search neigh-
borhoods for a broad class of scheduling problems that
includes the job shop total weighted earliness and tardi-
ness (E/T) scheduling problem. Work-in-process inventory
holding costs have been explicitly incorporated in Park and
Kim (2000), Kaskavelis and Caramanis (1998), and Chang
and Liao (1994) for various flow- and job shop schedul-
ing problems, although these papers present approaches for
very specific objective functions that do not fit into our
framework, and use very different solution techniques. Ohta
and Nakatanieng (2006) considers a job shop in which jobs
must complete by their due dates, and develops a shifting

Author's personal copy

J Sched (2013) 16:161–183 163

bottleneck-based heuristic to minimize holding costs. Thi-
agarajan and Rajendran (2005) and Jayamohan and Rajen-
dran (2004) evaluate dispatch rules for related problems. In
contrast, our approach applies to a much broader class of job
shop scheduling problems.

2 Problem description

In the remainder of the paper, we restrict our attention to
the job shop scheduling problem with intermediate hold-
ing costs in order to keep the discussion focused. How-
ever, we reiterate that many other job shop scheduling prob-
lems would be amenable to the proposed solution frame-
work as long as their associated optimal timing problems
are LP’s.

Consider a non-preemptive job shop with m machines
and n jobs, each of which must be processed on a subset
of those machines. The operation sequence of job j is de-
noted by an ordered set Mj where the ith operation in Mj

is represented by oij , i = 1, . . . ,mj = |Mj |, and Ji is the
set of operations to be processed on machine i. For clarity
of exposition, from now on we assume that the ith operation
oij of job j is performed on machine i in the definitions and
model below. However, our proposed solution approach ap-
plies to general job shops, and for our computational testing
we solve problems with more general routing.

Associated with each job j , j = 1, . . . , n, are several pa-
rameters: pij , the processing time for job j on machine i;
rj , the ready time for job j ; and hij , the holding cost per
unit time for job j while it is waiting in the queue before
machine i. All ready times, processing times and due dates
are assumed to be integer.

For a given schedule S, let wij be the time job j spends in
the queue before machine i, and let Cij be the time at which
job j finishes processing on machine i. We are interested in
objective functions with two components, each a function of
a particular schedule: an intermediate holding cost compo-
nent H(S), and a C(S) that is a function of the completion
times of each job. The intermediate holding cost component
can be expressed as follows:

H(S) =
n∑

j=1

mj∑

i=1

hijwij .

Before detailing permissible C(S) functions, we formulate
the m-machine job shop scheduling problem (Jm):

(Jm) min H(S) + C(S) (1)

s.t.

C1j − w1j = rj + p1j ∀j (2)

Ci−1j − Cij + wij = −pij

i = 2, . . . ,mj , ∀j (3)

Cik − Cij ≥ pik or Cij − Cik ≥ pij

∀i,∀j, k ∈ Ji (4)

Cij ,wij ≥ 0 i = 1, . . . ,mj ,∀j. (5)

Constraints (2) prevent processing of jobs before their re-
spective ready times. Constraints (3), referred to as opera-
tion precedence constraints, prescribe that a job j follows its
processing sequence o1j , . . . , omj j . Machine capacity con-
straints (4) ensure that a machine processes only one oper-
ation at a time, and an operation is finished once started.
Observe that even if the objective function is linear, due to
constraints (4) the formulation is not linear (without a spec-
ified order of operations).

The technique we present in this paper is applicable to
any objective function C(S) that can be modeled as a lin-
ear objective term along with additional variables and linear
constraints added to formulation (Jm). Although this allows
a rich set of possible objectives, to clarify our exposition,
for our computational experiments we focus on a specific
formulation that we call (Ĵm) that models total weighted
earliness, total weighted tardiness, total weighted comple-
tion time, and makespan objectives. For this formulation, in
addition to the parameters introduced above, dj represents
the due date for job j ; εj is the earliness cost per unit time
if job j completes its final operation before time dj ; πj rep-
resents the tardiness cost per unit time if job j completes its
final operation after time dj ; and γ represents the penalty
per unit time associated with the makespan. Variables Ej

and Tj model the earliness, max(dj − Cmj j ,0), and the tar-
diness, max(Cmj j − dj ,0), of job j , respectively. Conse-
quently, the total weighted earliness and tardiness are ex-
pressed as

∑
j εjEj and

∑
j πjTj , respectively. Note that if

dj = 0 ∀j , then Tj = Cj ∀j , and the total weighted tardiness
reduces to the total weighted completion time. The variable
Cmax represents the makespan and is set to maxj Cmj j in
the model, where sj is the slack of job j with respect to
the makespan. Formulation (Ĵm), which we present below,
thus extends formulation (Jm) with additional variables and
constraints. Constraints (7) relate the completion times of
the final operations to the earliness and tardiness values, and
constraints (8) ensure that the makespan is correctly identi-
fied.

(Ĵm) min
n∑

j=1

mj∑

i=1

hijwij +
n∑

j=1

(εjEj + πjTj)+ γCmax

(6)

s.t.

(2)–(5)

Author's personal copy

164 J Sched (2013) 16:161–183

Cmj j + Ej − Tj = dj ∀j (7)

Cmj j − Cmax + sj = 0 ∀j (8)

Ej ,Tj , sj ≥ 0 ∀j (9)

Cmax ≥ 0. (10)

Following the three field notation of Graham et al. (1979),
Jm/rj /

∑n
j=1

∑mj

i=1 hijwij +∑n
j=1(εjEj +πjTj)+γCmax

represents problem (Ĵm). (Ĵm) is strongly N P -hard, as a
single-machine special case of this problem with all inven-
tory holding and earliness costs and the makespan cost equal
to zero, i.e., the single-machine total weighted tardiness
problem 1/rj /

∑
πjTj , is known to be strongly N P -hard

(Lenstra et al. 1977).
In the next section of this paper, Sect. 3, we explain our

heuristic for this model. The core of our solution approach
is the single-machine subproblem developed conceptually in
Sect. 3.3.1 and analyzed in depth in Appendix A. In Sect. 4,
we extensively test our heuristic, and compare it to the cur-
rent best approaches for related problems. Finally, in Sect. 5,
we conclude and explore directions for future research.

3 Solution approach

As mentioned above, we propose a shifting bottleneck (SB)
heuristic for this problem, and our algorithm makes frequent
use of the optimal timing problem related to our problem,
and is best understood in the context of the disjunctive graph
representation of the problem, so in the next two subsec-
tions, we review these. For reasons that will become clear
in Sect. 3.3.1, we refer to our SB heuristic as the Shift-
ing Bottleneck Heuristic Utilizing Timing Problem Duals
(SB-TPD).

3.1 The timing problem

Observe that (Jm) with a linear objective function would be
an LP if we knew the sequence of operations on each ma-
chine (which would imply that we could pre-select one of
the terms in constraint (4) of (Jm)). Indeed, researchers of-
ten develop two-phase heuristics for similar problems based
on this observation, where first a processing sequence is de-
veloped, and then idle time is inserted by solving the optimal
timing problem.

For our problem, once operations are sequenced, and as-
suming operations are renumbered in sequence order on
each machine, the optimal schedule is obtained by solving
the associated timing problem (TTJm), defined below. The
variable iij denotes the time that operation j waits before
processing on machine i (that is, the time between when ma-
chine i completes the previous operation, and the time that

operation j begins processing on machine i) .

(TTJm) min H(S) + C(S) (11)

s.t.

(2), (3), (5)

Cij−1 − Cij + iij = −pij

∀i, j ∈ Ji, j �= 1 (12)

iij ≥ 0 ∀i, j ∈ Ji, j �= 1. (13)

Specifically, in our approach, we construct operation pro-
cessing sequences by solving the subproblems of a SB
heuristic. Once the operation processing sequences are
obtained, we find the optimal schedule given these se-
quences by solving (TTJm). The linear program (TTJm)

has O(nm) variables and constraints. As mentioned above,
to illustrate our approach, we focus on a specific example,
(Ĵm). The timing problem for (Ĵm), (̂TTJm), follows.

(̂TTJm) min
n∑

j=1

mj∑

i=1

hijwij

+
n∑

j=1

(εjEj + πjTj) + γCmax (14)

s.t.

(2), (3), (5)

(7)–(10)

(12)–(13).

Also, for some of our computational work, it is helpful to
add two additional constraints to formulation (̂TTJm),

Cmax ≤ CUB
max (15)

n∑

j=1

πjTj ≤ WTUB, (16)

where CUB
max and WTUB are upper bounds on Cmax and the

total weighted tardiness, respectively.

3.2 Disjunctive graph representation

The disjunctive graph representation of the scheduling prob-
lem plays a key role in the development and illustration of
our algorithm. Specifically, the disjunctive graph represen-
tation G(N,A) for an instance of our problem is given in
Fig. 1, where the machine processing sequences for jobs 1,
2, 3 are given by M1 = {o11, o31, o21}, M2 = {o22, o12, o32},
and M3 = {o23, o13, o33}, respectively. There are three types
of nodes in the node set N : one node for each operation oij ,

Author's personal copy

J Sched (2013) 16:161–183 165

Fig. 1 Disjunctive graph representation for (Jm)

one dummy starting node S and one dummy terminal node
T , and one dummy terminal node Fj per job associated with
the completion of the corresponding job j . The arc set A

consists of two types of arcs: the solid arcs in Fig. 1 repre-
sent the operation precedence constraints (3) and are known
as conjunctive arcs. The dashed arcs in Fig. 1 are referred
to as disjunctive arcs, and they correspond to the machine
capacity constraints (4).

Before a specific schedule is determined for a problem,
there is initially a pair of disjunctive arcs between each pair
of operations on the same machine (one in each direction).
The set of conjunctive and disjunctive arcs are denoted by
AC and AD , respectively, and we have A = AC ∪ AD . Both
conjunctive and disjunctive arcs emanating from a node oij

have a length equal to the processing time pij of operation
oij . The ready time constraints (2) are incorporated by con-
necting the starting node S to the first operation of each job j

by an arc of length rj . The start time of the dummy terminal
node T marks the makespan.

A feasible sequence of operations for (Jm) corresponds
to a selection of exactly one arc from each pair of disjunc-
tive arcs (also referred to as fixing a pair of disjunctive arcs)
so that the resulting graph G′(N,AC ∪AS

D) is acyclic where
AS

D denotes the set of disjunctive arcs included in G′. How-
ever, recall that by itself, this fixing of disjunctive arcs does
not completely describe a schedule for (Jm). The opera-
tion completion times and the objective value correspond-
ing to G′ are obtained by solving (TTJm) where the con-
straints (12) corresponding to AS

D are included. Note that a
disjunctive arc (oij , oik) ∈ AS

D corresponds to a constraint
Cij − Cik + iik = −pik in (TTJm).

3.3 Key steps of the algorithm

SB-TPD is an iterative machine-based decomposition algo-
rithm.

• First, a disjunctive graph representation of the problem
is constructed. Initially, there are no machines scheduled,
so that no disjunctive arcs are fixed, i.e., AS

D = ∅. This
implies that all machine capacity constraints are initially
ignored, and the machines are in effect allowed to process
as many operations as required simultaneously.

• At each iteration of SB-TPD, one single-machine sub-
problem is solved for each unscheduled machine (we de-
tail the single-machine subproblem below), the “bottle-
neck machine” is selected from among these (we de-
tail bottleneck machine selection below), and the disjunc-
tive arcs corresponding the schedule on this “bottleneck
machine” are added to AS

D . As we discuss below, the
disjunctive graph is used to characterize single-machine
problems at each iteration of the problem, and to iden-
tify infeasible schedules. Finally, the previous schedul-
ing decisions are re-evaluated, and some machines are re-
scheduled if necessary.

• These steps are repeated until all machines are scheduled
and a feasible solution to the problem (Jm) is obtained.

• A partial tree search over the possible orders of schedul-
ing the machines performs the loop in the previous steps
several times. Multiple feasible schedules for (Jm) are
obtained and the best one is picked as the final schedule
produced by SB-TPD.

In the following subsections, we provide more detail.

3.3.1 The single-machine problem

The key component of any SB algorithm is defining an
appropriate single-machine subproblem. The SB procedure
starts with no machine scheduled and determines the sched-
ule of one additional machine at each iteration. The basic
rationale underlying the SB procedure dictates that we se-
lect the machine that hurts the overall objective the most as
the next machine to be scheduled, given the schedules of
the currently scheduled machines. Thus, the single-machine
subproblem defined must capture accurately the effect of
scheduling a machine on the overall objective function. In
the following discussion, assume that the algorithm is at
the start of some iteration, and let M and MS ⊂ M de-
note the set of all machines and the set of machines already
scheduled, respectively. Since “machines being scheduled”
corresponds to fixing disjunctive arcs, observe that at this
stage of the algorithm, the partial schedule is represented by
disjunctive graph G′(N,AC ∪ AS

D) where AS
D corresponds

to the selection of disjunctive arcs fixed for the machines
in MS .

In our problem, the overall objective function value and
the corresponding operation completion times are obtained
by solving (TTJm). The formulation given in (11)–(13) re-
quires all machine sequences to be specified. However, note
that we can also solve an intermediate version of (TTJm)—
one that only includes machine capacity constraints corre-
sponding to the machines in MS while omitting the capac-
ity constraints for the remaining machines in M \ MS . We
refer to this intermediate optimal timing problem and its op-
timal objective value as (TTJm)(MS) and z(TTJm)(MS),

Author's personal copy

166 J Sched (2013) 16:161–183

respectively, and say that (TTJm) is solved over the dis-
junctive graph G′(N,AC ∪ AS

D).
Observe that initially SB-TPD starts with no machine

scheduled, i.e., MS is initially empty. Therefore, at the ini-
tialization step (TTJm) is solved over a disjunctive graph
G′(N,AC ∪ AS

D) where AS
D = ∅ by excluding all machine

capacity constraints (12) and yields a lower bound on the
optimal objective value of the original problem (Jm).

Once again, assume that algorithm is at the start of an
iteration, so that a set of machines MS is already sched-
uled and the disjunctive arcs selected for these machines are
included in AS

D . The optimal completion times C∗
ij for all

i ∈ M and j ∈ Ji are also available from (TTJm)(MS). As
the current iteration progresses, a new bottleneck machine
ib must be identified by determining which of the currently
unscheduled machines i ∈ M \ MS will have the largest
impact on the objective function of (TTJm)(MS ∪ i) if it is
sequenced effectively (that is, in the way that minimizes its
impact). Then, a set of disjunctive arcs for machine ib cor-
responding to the sequence provided by the corresponding
subproblem is added to AS

D , and a new set of optimal com-
pletion times C′

ij for all i ∈ M and j ∈ Ji is determined by

solving (TTJm)(MS ∪ {ib}).
Clearly, the optimal objective value of

(TTJm)(MS ∪ {ib}) is no less than that of (TTJm)(MS),
i.e., z(TTJm)(MS ∪ {ib}) ≥ z(TTJm)(MS) must hold. There-
fore, a reasonable objective for the subproblem of ma-
chine i is to minimize the difference z(TTJm)(MS ∪ {i}) −
z(TTJm)(MS). In the remainder of this section, we show
how this problem can be solved approximately as a single-
machine E/T scheduling problem with distinct ready times
and due dates.

For defining the subproblem of machine i, we note that
if the completion times obtained from (TTJm)(MS) for
the set of operations Ji to be performed on machine i

are equal to those obtained from (TTJm)(MS ∪ {i}) after
adding the corresponding machine capacity constraints, i.e.,
if C∗

ij = C′
ij for all j ∈ Ji , then we have z(TTJm)(MS) =

z(TTJm)(MS ∪{i}). This observation implies that we can re-
gard the current operation completion times C∗

ij provided by

(TTJm)(MS) as due dates in the single-machine subprob-
lems. Early and late deviations from these due dates are dis-
couraged by assigning them earliness and tardiness penal-
ties, respectively. These penalties are intended to represent
the impact on the overall problem objective if operations are
moved earlier or later because of the way a machine is se-
quenced.

Specifically, for a machine i ∈ M \ MS , some of the
operations in Ji may overlap in the optimal solution of
(TTJm)(MS) because this timing problem excludes the ca-
pacity constraints for machine i. Thus, scheduling a cur-
rently unscheduled machine i implies removing the overlaps

among the operations on this machine by moving them ear-
lier/later in time. This, of course, may also affect the com-
pletion times of operations on other machines. For a given
operation oij on machine i, assume that C∗

ij = dij in the op-

timal solution of (TTJm)(MS). Then, we can measure the
impact of moving operation oij for δ > 0 time units earlier
or later on the overall objective function by including a con-
straint of the form

Cij + sij = dij − δ (Cij ≤ dij − δ) or (17)

Cij − sij = dij + δ (Cij ≥ dij + δ), (18)

respectively, in the optimal timing problem (TTJm)(MS)

and resolving it, where the variable sij ≥ 0 denotes the slack
or surplus variable associated with (17) or (18), respectively,
depending on the context. Of course, optimally determin-
ing the impact on the objective function for all values of
δ is computationally prohibitive as we explain later in this
section. However, as we demonstrate in Appendix A, the
increase in the optimal objective value of (TTJm)(MS)

due to an additional constraint (17) or (18) can be bounded
by applying sensitivity analysis to the optimal solution of
(TTJm)(MS) to determine the value of the dual variables
associated with the new constraints.

Specifically, we show the following:

Proposition 3.1 Consider the optimal timing problems
(TTJm)(MS) and (TTJm)(MS ∪ {ib}) solved in iter-
ations k and k + 1 of SB-TPD where ib is the bottle-
neck machine in iteration k. For any operation oibj , if
C′

ibj
= Cibj − δ or C′

ibj
= Cibj + δ for some δ > 0, then

z(TTJm)(MS ∪ {ib}) − z(TTJm)(MS) ≥ |ȳ′′
m+1|δ ≥ 0, where

ȳ′′ is defined in Appendix A in (36)–(37).

ȳ′′
m+1 is the value of the dual variable associated with

(17) or (18) if we augment (TTJm)(MS) with (17) or (18),
respectively, and carry out a single dual simplex iteration.
Thus, the cost increase characterized in Proposition 3.1 is in
some ways related to the well-known shadow price interpre-
tation of the dual variables. In Appendix A, we give a closed
form expression for ȳ′′ that can be calculated explicitly us-
ing only information present in the optimal basic solution
to (TTJm)(MS). Thus, we can efficiently bound the im-
pact of pushing an operation earlier or later by δ time units
on the overall objective function from below. This allows
us to formulate the single-machine subproblem of machine
i in SB-TPD as a single-machine E/T scheduling prob-
lem 1/rj /

∑
εjEj + πjTj with the following parameters:

the ready time rij of job j on machine i is determined by
the longest path from node S to node oij in the disjunctive
graph G′(N,AC ∪ AS

D); the due date dij of job j on ma-
chine i is the optimal completion time C∗

ij of operation oij

in the current optimal timing problem (TTJm)(MS); the

Author's personal copy

J Sched (2013) 16:161–183 167

Fig. 2 Effect of moving a single operation on the overall objective

earliness and tardiness costs εij and πij of job j on machine
i are given by

εij = −ȳ′′
m+1 = c̄t

Āj t

= − max
k �=j |Ājk>0

c̄k

−Ājk

and

πij = ȳ′′
m+1 = − c̄t

Āj t

= − max
k|Ājk<0

c̄k

Ājk

,

(19)

respectively, where these quantities are defined in (34)
and (36)–(37). (If C∗

ij = rij + pij , then it is not feasi-
ble to push operation oij earlier, and εij is set to zero.)
As we detail in Appendix A, this cost function, developed
for shifting a single operation oij earlier or later, is based
on a single implicit dual simplex iteration after adding the
constraint (17) or (18) to (TTJm)(MS). We are therefore
only able to obtain a lower bound on the actual change in
cost that would result from changing Cij from its current
value C∗

ij . In general, the amount of change in cost would
be a piecewise linear and convex function as illustrated in
Fig. 2. However, while the values of εij and πij in (19)
may be computed efficiently based on the current optimal
basis of (TTJm)(MS)—see Appendix B for an example
on (̂TTJm)—we detail at the end of Appendix A how de-
termining the actual cost functions requires solving one LP
with a parametric right hand side for each operation, and is
therefore computationally expensive. In addition, the ma-
chine capacity constraints are introduced simultaneously
for all of the operations on the bottleneck machine in SB-
TPD, and there is no guarantee that this combined effect is
close to the sum of the individual effects. However, as we
demonstrate in our computational experiments in Sect. 4,
the single-machine subproblems provide reasonably accu-
rate bottleneck information and lead to good operation pro-
cessing sequences. We also note that the single-machine
E/T scheduling problem 1/rj /

∑
εjEj + πjTj is strongly

N P -hard because a special case of this problem with all
earliness costs equal to zero, i.e., the single-machine to-
tal weighted tardiness problem 1/rj /

∑
πjTj , is strongly

N P -hard due to Lenstra et al. (1977). Several efficient
heuristic and optimal algorithms have been developed for
1/rj /

∑
εjEj + πjTj in the last decade. See Bulbul et al.

(2007), Tanaka and Fujikuma (2008), Sourd (2009), Kedad-
Sidhoum and Sourd (2010). Our focus here is to develop an

effective set of cost coefficients for the subproblems, and
any of the available algorithms in the literature could be
used in conjunction with the approach we present. For the
computational experiments in Sect. 4, in some instances we
solve the subproblem optimally using a time-indexed for-
mulation, and in some instances we solve the subproblem
heuristically using the algorithm of Bulbul et al. (2007).
The basis of this approach is constructing good operation
processing sequences from a tight preemptive relaxation of
1/rj /

∑
εjEj + πjTj . We note that it is possible to extend

this preemptive lower bound to a general piecewise linear
and convex E/T cost function with multiple pieces on ei-
ther side of the due date. Thus, if one opts for constructing
the actual operation cost functions explicitly at the expense
of extra computational burden, it is possible to extend the
algorithm of Bulbul et al. (2007) to solve the resulting sub-
problems.

Also, an additional difficulty might arise at each itera-
tion of the algorithm. We observe that when the set of dis-
junctive arcs in the graph G′(N,AC ∪ AS

D) is empty, then
no path exists between any two operations oik and oij on
a machine i ∈ M. However, as we add disjunctive arcs to
G′, we may create paths between some operations of a cur-
rently unscheduled machine i /∈ MS . In particular, a path
from node oik to oij indicates a lower bound on the amount
of time that must elapse between the starting times of these
two operations. This type of path is an additional constraint
on the final schedule, and is referred to as a delayed prece-
dence constraint (DPC). Rather than explicitly incorporate
these DPC’s into our subproblem definition, we check for
directed cycles while updating G′, since violated DPC’s im-
ply cycles in the updated graph. If necessary, we remove cy-
cles by applying local changes to the sequence of the current
bottleneck machine.

We conclude this section with some comments on clas-
sical job shop scheduling problems with regular objec-
tive functions, such as Jm//Cmax, Jm//

∑
j wjCj , and

Jm//
∑

j wjTj . The cost coefficients in (19) measure the
marginal effect of moving operation oij earlier or later. The
former is clearly zero for any regular objective function.
Furthermore, πij is also zero if the job completion time
is not affected by a marginal delay in the completion time
of oij . Thus, SB-TPD may be ineffective for the classi-
cal objectives in the literature. The true benefits of our so-
lution framework are only revealed when operation com-
pletion times have a direct impact on the total cost. Fur-
thermore, for regular objectives, the task of estimating the
actual piecewise linear operation cost functions is accom-
plished easily by longest path calculations in the disjunc-
tive graph. Of course, solving the resulting single-machine
subproblems with a general piecewise linear and convex
weighted tardiness objective is a substantially harder task.
Bulbul (2011) formalizes these concepts and develops a

Author's personal copy

168 J Sched (2013) 16:161–183

hybrid shifting bottleneck-tabu search heuristic for the job
shop total weighted tardiness problem by generalizing the
algorithm of Bulbul et al. (2007) for solving the subprob-
lems as discussed above.

3.3.2 Selecting the bottleneck machine

As alluded to above, at each iteration of the algorithm, we
solve the single-machine problem described above for each
of the remaining unscheduled machines, and select the one
with the highest corresponding subproblem objective value
to be the current bottleneck machine ib . Then, the disjunc-
tive graph and the optimal timing problem are updated ac-
cordingly to include the machine capacity constraints of this
machine where the sequence of operations on ib are deter-
mined by the solution of the corresponding subproblem.

3.3.3 Rescheduling

The last step of an iteration of SB-TPD is re-evaluating
the schedules of the previously scheduled machines in MS

given the operation processing sequence on the current bot-
tleneck machine ib . It is generally observed that SB algo-
rithms without a rescheduling step perform rather poorly
(Demirkol et al. 1997). We perform a classical reschedul-
ing step, such as that in Pinedo and Singer (1999). For
each machine i ∈ MS , we first delete the corresponding dis-
junctive arcs from the set AS

D and construct a subproblem
for machine i based on the solution of the optimal timing
problem (TTJm)(MS \ {i} ∪ {ib}). Then, machine i is re-
scheduled according to the sequence obtained from the sub-
problem by adding back the corresponding disjunctive arcs
to AS

D . The rescheduling procedure may be repeated several
times until no further improvement in the overall objective
is achieved.

3.3.4 Tree search

SB-TPD as outlined up until here terminates in m iterations
with a single feasible schedule for (Jm) by scheduling one
additional machine at each iteration. However, it is widely
accepted in the literature that constructing multiple feasible
schedules by picking different orders in which the machines
are scheduled leads to substantially improved solution qual-
ity. This is typically accomplished by setting up a partial
enumeration tree that conducts a search over possible orders
of scheduling the machines. (See, for instance, Adams et al.
1988 and Pinedo and Singer 1999.) Each node in this enu-
meration tree corresponds to an ordered set MS that spec-
ifies the order of scheduling the machines. The basic idea
is to rank the machines in M \ MS in non-increasing or-
der of their respective subproblem objective function values
and create a child node for the βl most critical machines in
M \ MS , where l = |MS |. Thus, an m-dimensional vec-
tor β = (β0, . . . , βm−1) prescribes the maximum number of

children at each level of the tree. This vector provides us
with a direct mechanism to trade-off solution time and qual-
ity. Our solution approach incorporates no random compo-
nents, and we can expand the search space with the hope
of identifying progressively better solutions by adjusting β

appropriately. For more details and a discussion of the fath-
oming rule that further restricts the size of the search tree,
the reader is referred to Bulbul (2011).

4 Computational experiments

The primary goal of our computational study is to demon-
strate that the proposed solution approach is general enough
that it can produce good quality solutions to different types
of job shop scheduling problems. To this end, we consider
three special cases of (Ĵm). In all cases, the fundamental
insight is that SB-TPD performs quite well, and in particu-
lar, its performance relative to that of alternative approaches
improves significantly as the percentage of the total cost at-
tributed to inventory holding costs grows.

In Sect. 4.1, γ = 0 and we solve a job shop total weighted
E/T problem with intermediate holding costs. For small
4 × 10 (m × n) instances, we illustrate the performance
of the algorithm in an absolute sense by benchmarking it
against a time-indexed (TI) formulation of the problem (see
Dyer and Wolsey 1990). However, directly solving the TI
formulation is impractical (and often, impossible) for larger
instances. As there are no directly competing viable algo-
rithm in the literature, we follow a different path to assess the
performance of our algorithm on larger 10 × 10 instances.
We consider 22 well-known job shop total weighted tardi-
ness instances due to Pinedo and Singer (1999) and modify
them as necessary. In particular, the unit inventory holding
costs hij , i = 2, . . . ,mj , including the unit earliness cost
εj that represents the finished goods inventory holding cost
per unit time, are non-decreasing for a job j through pro-
cessing stages, and the unit tardiness cost πj is larger than
εj . Depending on the magnitude of πj relative to the other
cost parameters and the tightness of the due dates, we would
expect that a good schedule constructed specifically for the
job shop total weighted tardiness problem does also perform
well under the presence of inventory holding costs in addi-
tion to tardiness penalties. Thus, for 10 × 10 instances we
compare the performance of SB-TPD against those of algo-
rithms specifically designed for the job shop total weighted
tardiness problem. This instance generation mechanism en-
sures a fair comparison. In Sects. 4.2.1 and 4.3.1, we utilize
a similar approach to assess the performance of the algo-
rithm for the job shop total weighted completion time and
makespan minimization problems with intermediate inven-
tory holding costs, respectively.

The results reported in Sect. 4.1.1 for the TI formulation
are obtained by IBM ILOG OPL Studio 5.5 running

Author's personal copy

J Sched (2013) 16:161–183 169

on IBM ILOG CPLEX 11.0. The algorithms we devel-
oped were implemented in Visual Basic (VB) under Excel.
The optimal timing problem (̂TTJm) and the preemptive re-
laxation of the single-machine subproblem 1/rj /

∑
εjEj +

πjTj formulated as a transportation problem as described
by Bulbul et al. (2007) are solved by IBM ILOG CPLEX
9.1 through the VB interface provided by the IBM ILOG
OPL 3.7.1 Component Libraries. All runs were com-
pleted on a single core of an HP Compaq DX 7400 computer
with a 2.40 GHz Intel Core 2 Quad Q6600 CPU and 3.25 GB
of RAM running on Windows XP. The ease and speed of
development is the main advantage of the Excel/VB envi-
ronment. However, we note that an equivalent C/C++ imple-
mentation would probably be several times faster. This point
should be taken into account while evaluating the times re-
ported in our study.

4.1 Job shop total weighted E/T problem with
intermediate inventory holding costs

4.1.1 Benchmarking against the TI formulation

As mentioned above, for benchmarking against the TI for-
mulation of (Ĵm), we created 10 instances of size 4 × 10.
All jobs visit all machines in random order. The process-
ing times are generated from an integer uniform distribu-
tion U [1,10]. For jobs that start their processing on ma-
chine i, the ready times are distributed as integer U [0,Pi],
where Pi refers to the sum of the processing times of the
first operations to be performed on machine i. Then, the
due date of job j is determined as dj = rj + �f ∑mj

i=1 pij,
where f is the due date tightness factor. For each job, the
inventory holding cost per unit time at the first stage of pro-
cessing is distributed as U [1,10]. At subsequent stages, the
inventory holding cost per unit time is obtained by mul-
tiplying that at the immediately preceding stage by a uni-
form random number U [100,150]%. The tardiness cost per
unit time, πj , is distributed as U [100,200]% times εj . For
each instance, the due date tightness factor is varied as
f = 1.0,1.3,1.5,1.7,2.0, yielding a total of 50 instances.
Experimenting with different values of f while keeping all
other parameters constants allows us to observe the impact
of increasing slack in the schedule. Another 50 instances are
generated by doubling the unit tardiness cost for all jobs in
a given instance.

In the TI formulation of (Ĵm), the binary variable xijt

takes the value 1 if oij completes processing at time t . The
machine capacity constraints are formulated as described by
Dyer and Wolsey (1990), and for modeling the remaining
constraints (2), (3), (8), we represent Cij by

∑
t txij t . A time

limit of 7,200 seconds (2 hours) is imposed on the TI formu-
lation, and the best incumbent solution is reported if the time
limit is exceeded without a proven optimal solution.

For the tree search, β = (3,3,2,1) and at most 18 fea-
sible schedules are constructed for (Ĵm) in the partial enu-
meration tree (see Sect. 3.3.4). At each node of the tree, we
perform rescheduling for up to three full cycles. We do two
experiments for each of the 100 instances. In the first run, the
single-machine subproblems are solved optimally by a con-
ventional TI formulation (“SB-TPD-OptimalSubprob”), and
then in the second run, we only seek a good feasible solution
in the subproblems by adopting the approach of Bulbul et al.
(2007) (“SB-TPD-HeuristicSubprob”).

The results of our experiments are summarized in Ta-
bles 1 and 2. The instance names are listed in the first col-
umn of Table 1. In the upper half of this table, we report
the results for the first 50 instances, where πj is determined
as U [100,200]% times εj . Re-solving each instance after
doubling πj for all jobs in a given instance yields the re-
sults in the bottom half of the table. The objective func-
tion values associated with the optimal/best incumbent so-
lutions from the TI formulation appear in columns 2–6 as
a function of the due date tightness factor f . Applying SB-
TPD by solving the subproblems optimally provides us with
the objective function values in columns 7–11, and the per-
centage gaps with respect to the TI formulation are cal-
culated in columns 12–16. A gap is negative if SB-TPD-
OptimalSubprob returns a better solution than the TI for-
mulation. The corresponding results obtained by solving the
subproblems heuristically are specified in columns 17–26.
Optimal solutions in the table appear in bold. The aver-
age, median, minimum, and maximum percentage gaps are
computed in rows labeled with the headers “Avg.,” “Med.,”
“Min,” and “Max,” respectively. For columns 2–6, these
statistics are associated with the optimality gaps of the in-
cumbent solutions reported by CPLEX at the time limit. Ta-
ble 2 presents statistics on the CPU times until the best so-
lutions are identified for SB-TPD-OptimalSubprob and SB-
TPD-HeuristicSubprob.

The TI formulation terminates with an optimal solu-
tion in 59 out of 100 cases. Among these 59 cases, SB-
TPD-OptimalSubprob and SB-TPD-HeuristicSubprob iden-
tify 19 and 5 optimal solutions, respectively. Over all 100
instances, the solution gaps of SB-TPD-OptimalSubprob
and SB-TPD-HeuristicSubprob with respect to the opti-
mal/incumbent solution from the TI formulation are 2.75%
and 5.86%, respectively. We achieve these optimality gaps
in just 31.9 and 3.1 seconds on average with SB-TPD-
OptimalSubprob and SB-TPD-HeuristicSubprob, respec-
tively. We therefore conclude that the subproblem defini-
tion properly captures the effect of the new sequencing de-
cisions on the currently unscheduled machines, and that
SB-TPD yields excellent feasible solutions to this diffi-
cult job shop scheduling problem in short CPU times. We
observe that SB-TPD-OptimalSubprob is about an order
of magnitude slower than the SB-TPD-HeuristicSubprob.

Author's personal copy

170 J Sched (2013) 16:161–183

Ta
bl

e
1

B
en

ch
m

ar
ki

ng
ag

ai
ns

tt
he

T
I

fo
rm

ul
at

io
na

on
jo

b
sh

op
E

/
T

in
st

an
ce

s
w

ith
in

te
rm

ed
ia

te
in

ve
nt

or
y

ho
ld

in
g

co
st

s

π
j

∼
ε j

·U
(1

00
,
20

0)
%

T
im

e-
In

de
xe

d
(T

I)
SB

-T
PD

-O
pt

im
al

Su
bp

ro
b

SB
-T

PD
-H

eu
ri

st
ic

Su
bp

ro
b

O
FV

O
FV

G
ap

to
T

I(
%

)
O

FV
G

ap
to

T
I(

%
)

f
=

1.
0

1.
3

1.
5

1.
7

2.
0

1.
0

1.
3

1.
5

1.
7

2.
0

1.
0

1.
3

1.
5

1.
7

2.
0

1.
0

1.
3

1.
5

1.
7

2.
0

1.
0

1.
3

1.
5

1.
7

2.
0

Jm
_1

42
95

31
33

24
74

20
38

b
19

62
43

83
34

57
25

68
20

65
19

54
2.

1
10

.3
3.

8
1.

3
−0

.4
45

68
36

65
27

73
20

98
20

44
6.

4
17

.0
12

.1
2.

9
4.

2

Jm
_2

40
87

31
70

24
87

22
11

b
19

68
b

41
09

35
68

27
52

22
23

19
68

0.
5

12
.6

10
.6

0.
6

0.
0

45
09

32
32

26
16

22
31

20
52

10
.3

2.
0

5.
2

0.
9

4.
3

Jm
_3

28
57

20
45

b
16

52
b

14
82

b
15

08
b

29
22

21
99

17
02

14
82

b
15

28
2.

3
7.

5
3.

0
0.

0
1.

4
30

14
22

00
16

98
14

86
15

17
5.

5
7.

6
2.

8
0.

3
0.

6

Jm
_4

23
08

b
16

78
b

13
94

b
11

97
b

12
33

b
25

74
18

77
14

00
11

97
b

12
36

11
.5

11
.9

0.
4

0.
0

0.
3

27
05

19
70

13
97

13
34

13
66

17
.2

17
.4

0.
2

11
.5

10
.8

Jm
_5

43
65

b
33

51
b

28
44

b
25

78
b

27
56

46
30

34
28

28
44

b
25

78
b

24
84

6.
1

2.
3

0.
0

0.
0

−9
.9

44
86

34
90

30
98

26
12

25
83

2.
8

4.
1

8.
9

1.
3

−6
.3

Jm
_6

40
34

29
17

22
43

19
99

b
20

14
46

07
31

48
25

84
20

37
20

81
14

.2
7.

9
15

.2
1.

9
3.

3
46

47
33

99
22

71
20

87
21

02
15

.2
16

.5
1.

2
4.

4
4.

4

Jm
_7

31
95

20
72

b
22

42
22

14
20

77
32

14
20

72
b

22
66

19
93

21
81

0.
6

0.
0

1.
1

−1
0.

0
5.

0
33

17
23

62
22

22
22

05
21

87
3.

8
14

.0
−0

.9
−0

.4
5.

3

Jm
_8

25
30

b
17

65
b

14
31

b
15

71
15

68
b

25
30

b
17

65
b

14
70

16
97

17
55

0.
0

0.
0

2.
7

8.
0

11
.9

29
46

18
56

17
04

16
77

18
68

16
.4

5.
2

19
.1

6.
8

19
.1

Jm
_9

27
34

b
22

37
17

79
14

88
b

14
48

28
51

22
41

19
23

15
44

14
25

4.
3

0.
2

8.
1

3.
7

−1
.6

29
23

21
86

18
41

16
64

15
63

6.
9

−2
.3

3.
5

11
.8

7.
9

Jm
_1

0
30

81
b

21
19

b
20

44
17

14
b

16
76

32
82

21
19

b
19

73
17

14
b

15
54

6.
5

0.
0

−3
.4

0.
0

−7
.3

30
81

b
21

19
b

21
00

17
50

15
77

0.
0

0.
0

2.
8

2.
1

−5
.9

A
vg

.
6.

4
9.

0
10

.4
26

.8
10

.8
A

vg
.

4.
8

5.
3

4.
2

0.
6

0.
3

A
vg

.
8.

5
8.

1
5.

5
4.

2
4.

5

M
ed

.
6.

3
9.

7
5.

8
26

.8
9.

1
M

ed
.

3.
3

4.
9

2.
9

0.
3

0.
1

M
ed

.
6.

6
6.

4
3.

1
2.

5
4.

3

M
in

3.
4

3.
4

3.
1

6.
6

0.
3

M
in

0.
0

0.
0

−3
.4

−1
0.

0
−9

.9
M

in
0.

0
−2

.3
−0

.9
−0

.4
−6

.3

M
ax

9.
7

13
.2

22
.0

47
.0

24
.1

M
ax

14
.2

12
.6

15
.2

8.
0

11
.9

M
ax

17
.2

17
.4

19
.1

11
.8

19
.1

π
j

∼
ε j

·U
(2

00
,
40

0)
%

Jm
_1

71
15

b
52

32
38

88
b

28
56

b
23

47
77

50
55

71
40

93
29

44
23

40
8.

9
6.

5
5.

3
3.

1
−0

.3
82

65
61

58
43

15
29

57
23

47
16

.2
17

.7
11

.0
3.

5
0.

0

Jm
_2

71
55

55
06

37
12

29
60

21
58

b
72

09
57

26
42

22
29

56
21

58
0.

8
4.

0
13

.7
−0

.1
0.

0
85

13
52

60
43

99
30

24
21

81
19

.0
−4

.5
18

.5
2.

2
1.

1

Jm
_3

52
06

33
66

b
24

96
19

81
b

16
94

b
52

28
35

87
25

74
20

48
16

94
b

0.
4

6.
6

3.
1

3.
4

0.
0

53
61

36
26

26
11

20
28

17
28

3.
0

7.
7

4.
6

2.
4

2.
0

Jm
_4

40
52

b
26

84
b

20
16

b
15

33
b

13
00

b
45

17
29

95
22

16
16

21
13

19
11

.5
11

.6
10

.0
5.

8
1.

5
47

37
28

12
22

51
17

64
14

91
16

.9
4.

8
11

.6
15

.1
14

.7

Jm
_5

77
47

b
55

64
b

43
94

b
36

93
b

37
02

81
76

56
32

43
94

b
36

93
b

31
75

5.
5

1.
2

0.
0

0.
0

−1
4.

2
79

29
56

85
47

58
37

60
33

58
2.

3
2.

2
8.

3
1.

8
−9

.3

Jm
_6

69
82

b
55

20
32

98
b

25
37

b
22

85
b

77
40

52
72

37
62

26
69

23
36

10
.8

−4
.5

14
.1

5.
2

2.
2

74
01

56
00

32
98

b
26

90
23

54
6.

0
1.

4
0.

0
6.

0
3.

0

Jm
_7

55
47

32
19

b
30

99
26

57
22

72
b

56
29

32
19

b
33

13
26

09
24

35
1.

5
0.

0
6.

9
−1

.8
7.

2
58

39
37

65
33

53
26

09
24

70
5.

3
17

.0
8.

2
−1

.8
8.

7

Jm
_8

44
18

b
27

64
b

19
00

b
19

25
b

16
10

b
45

06
27

64
b

19
00

b
21

62
16

10
b

2.
0

0.
0

0.
0

12
.3

0.
0

48
38

29
19

19
80

22
36

18
49

9.
5

5.
6

4.
2

16
.2

14
.8

Jm
_9

48
42

b
35

60
b

31
36

26
23

16
74

b
50

48
37

18
30

08
21

92
16

74
b

4.
3

4.
4

−4
.1

−1
6.

5
0.

0
51

83
36

64
32

10
24

04
17

50
7.

0
2.

9
2.

3
−8

.4
4.

5

Jm
_1

0
54

17
b

34
93

b
28

71
24

40
19

27
54

17
b

34
93

b
29

76
23

27
17

91
0.

0
0.

0
3.

7
−4

.6
−7

.1
54

17
b

34
93

b
29

76
23

27
18

14
0.

0
0.

0
3.

7
−4

.6
−5

.8

A
vg

.
5.

4
19

.1
9.

2
22

.6
26

.5
A

vg
.

4.
6

3.
0

5.
3

0.
7

−1
.1

A
vg

.
8.

5
5.

5
7.

2
3.

2
3.

4

M
ed

.
5.

0
22

.2
4.

9
16

.3
30

.4
M

ed
.

3.
1

2.
6

4.
5

1.
5

0.
0

M
ed

.
6.

5
3.

9
6.

4
2.

3
2.

5

M
in

0.
9

8.
1

4.
0

9.
2

12
.1

M
in

0.
0

−4
.5

−4
.1

−1
6.

5
−1

4.
2

M
in

0.
0

−4
.5

0.
0

−8
.4

−9
.3

M
ax

10
.3

27
.0

27
.7

48
.4

37
.1

M
ax

11
.5

11
.6

14
.1

12
.3

7.
2

M
ax

19
.0

17
.7

18
.5

16
.2

14
.8

a T
he

tim
e

lim
it

is
72

00
se

co
nd

s
b
O

pt
im

al
so

lu
tio

n

Author's personal copy

J Sched (2013) 16:161–183 171

Table 2 CPU time statistics (in
seconds) for the results in
Table 1

πj ∼ εj · U(100,200)%

SB-TPD-OptimalSubprob SB-TPD-HeuristicSubprob

f = 1.0 1.3 1.5 1.7 2.0 1.0 1.3 1.5 1.7 2.0

Avg. 43.0 19.8 23.6 29.9 41.5 2.8 2.3 3.7 2.8 3.0

Med. 39.5 9.0 10.1 19.9 38.5 2.1 1.4 3.3 2.5 2.5

Min 4.0 4.0 4.5 3.6 4.9 0.4 0.4 0.4 1.0 0.7

Max 81.7 79.2 67.1 84.6 81.6 7.2 6.4 7.4 6.5 6.3

πj ∼ εj · U(200,400)%

Avg. 45.4 26.7 26.9 26.4 35.8 3.6 2.9 3.3 2.9 4.2

Med. 50.0 14.0 29.8 14.8 35.0 2.9 1.7 3.0 2.1 3.8

Min 3.9 4.1 3.7 3.6 3.7 0.3 0.5 0.3 0.6 0.5

Max 86.8 91.8 48.6 61.0 76.2 8.8 6.5 8.0 6.8 7.6

Based on the quality/time trade-off, we opt for solving the
subproblems heuristically in the rest of our computational
study.

For all algorithms, the objective values are almost always
non-increasing as a function of f = 1.0,1.3,1.5,1.7. For f

large enough, tardiness costs are virtually eliminated, and in-
creasing f further leads to an increase in the objective func-
tion value. Therefore, we occasionally observe that for some
problem instances the objective increases from f = 1.7 to
f = 2.0. Furthermore, the performance of the SB-TPD vari-
ants improves significantly as f increases. This may par-
tially be attributed to the relatively lower quality of the in-
cumbent solutions for large f values. The optimality gaps
reported by CPLEX for incumbents at termination tend to
grow with f . Note that larger f values imply longer plan-
ning horizons and increase the size of the TI formulation.
As a final remark, doubling the unit tardiness costs does not
lead to a visible pattern in solution quality for the SB-TPD
variants.

4.1.2 Benchmarking against heuristics

As we mentioned at the beginning of Sect. 4, the major ob-
stacle to demonstrating the value of our heuristic for large
problem instances is the lack of directly competing algo-
rithms in the literature. To overcome this, we pursue an un-
conventional path. Instead of simply benchmarking against a
set of dispatch rules, we adopt a data generation scheme that
is tailored toward algorithms specifically developed for the
job shop total weighted tardiness problem (JS-TWT). In par-
ticular, we suitably modify 22 well-known standard bench-
mark instances originally proposed for Jm//Cmax for our
problem. Note that this same set of instances were adapted
to JS-TWT by Pinedo and Singer (1999) and are commonly
used for benchmarking in papers focusing on JS-TWT, such
as Pinedo and Singer (1999), Kreipl (2000), Bulbul (2011).

In the original 10 × 10 makespan instances, all jobs visit
all machines, all ready times are zero, and the process-
ing times are distributed between 1 and 100. For our pur-
poses, all processing times are scaled as pij ← �pij /10�,
j = 1, . . . , n, i = 1, . . . ,mj , in order to reduce the total com-
putational burden because the effort required in the approach
adopted for solving the subproblems depends on the sum
of the processing times. (Recall that our goal in this pa-
per is to develop an effective set of cost coefficients for
the subproblems, so that we could have employed other al-
gorithms in the literature that do not have this limitation
for solving the subproblems.) The due dates and the inven-
tory holding, earliness, and tardiness costs per unit time are
set following the scheme described in Sect. 4.1. Two lev-
els of the unit tardiness costs and five values of f for each
makespan instance yield a total of 220 instances for our
problem. As we observe later in this section, under tight due
dates the majority of the total cost is due to the tardiness
of the jobs, and we expect that good schedules constructed
specifically for minimizing the total weighted tardiness in
these instances also perform well in the presence of inter-
mediate inventory holding and earliness costs in addition to
tardiness penalties. In other words, we have specifically de-
signed an instance generation mechanism to ensure a fair
comparison.

We use these instances to demonstrate that our (non-
objective-specific) heuristic SB-TPD fares quite well against
state-of-the-art algorithms developed for JS-TWT for small
values of f . On the other hand, as more slack is introduced
into the schedule by setting looser due dates and holding
costs become increasingly more significant, our approach
dominates alternative approaches.

A total of five different algorithms are run on each
instance. We apply SB-TPD by solving the subproblems
heuristically. We test this against the large-step random
walk local search algorithm (“LSRW”) by Kreipl (2000)
and the SB heuristic for JS-TWT (“SB-WT”) due to Pinedo

Author's personal copy

172 J Sched (2013) 16:161–183

Table 3 Results for the job shop total weighted E/T instances with intermediate inventory holding costs

πj ∼ εj · U(100,200)% πj ∼ εj · U(200,400)%

f = 1.0

B-WT/
B-OFV(%)

Gap to B-OFV(%) B-WT/
B-OFV(%)

Gap to B-OFV(%)

SB-TPD LSRW SB-WT Gen-SB ATC SB-TPD LSRW SB-WT Gen-SB ATC

Avg. 87.5 10.4 0.1 9.4 43.0 44.9 93.3 9.0 0.3 9.9 41.9 45.0

Med. 87.4 9.8 0.0 9.1 42.6 42.0 93.3 9.4 0.0 8.0 40.3 42.9

Min 83.9 0.0 0.0 0.0 4.1 16.4 91.2 0.0 0.0 0.0 3.8 14.7

Max 90.1 28.3 2.0 26.6 77.8 99.3 95.2 17.4 6.1 25.7 74.4 99.2

f = 1.3

B-WT/
B-OFV(%)

Gap to B-OFV(%) B-WT/
B-OFV(%)

Gap to B-OFV(%)

SB-TPD LSRW SB-WT Gen-SB ATC SB-TPD LSRW SB-WT Gen-SB ATC

Avg. 54.1 12.1 1.0 10.7 70.6 123.0 69.6 14.6 0.5 11.5 80.1 147.4

Med. 54.2 11.9 0.0 10.6 54.6 111.1 70.2 12.3 0.0 10.7 67.3 133.4

Min 34.1 0.0 0.0 0.0 27.0 51.0 50.9 0.0 0.0 0.0 36.5 64.8

Max 73.8 37.2 10.9 30.6 203.7 293.6 85.0 40.8 4.0 38.8 276.6 397.0

f = 1.5

B-WT/
B-OFV(%)

Gap to B-OFV(%) B-WT/
B-OFV(%)

Gap to B-OFV(%)

SB-TPD LSRW SB-WT Gen-SB ATC SB-TPD LSRW SB-WT Gen-SB ATC

Avg. 13.0 2.3 16.2 21.8 57.9 142.2 20.4 7.2 7.3 14.3 78.0 196.2

Med. 9.7 0.0 12.5 16.0 51.2 138.5 16.4 3.4 1.2 9.7 61.0 184.9

Min 0.0 0.0 0.0 0.0 10.0 71.3 0.0 0.0 0.0 0.0 13.3 96.1

Max 40.0 21.2 63.2 70.5 141.2 293.6 56.4 42.5 55.5 63.2 212.1 475.8

and Singer (1999). Both of these algorithms generate very
high quality solutions for JS-TWT. In general, LSRW per-
forms better than SB-WT. These observations are based on
the original papers and are also verified by our computa-
tional testing in this section. We note that Pinedo and Singer
(1999) and Kreipl (2000) demonstrate the performance of
their algorithms on the same 22 benchmark instances con-
sidered here, except that they consider a different tardiness
cost structure and set f = 1.3,1.5,1.6. Preliminary runs in-
dicated that the LSRW generally improves very little after
120 seconds of run time. Thus, the time limit for this algo-
rithm is set to 120 seconds. Due to the probabilistic nature
of this algorithm, we run it 5 times for each instance and
report the average objective function value. We also run the
general purpose SB algorithm (“Gen-SB”) by Asadathorn
(1997) that also supports a variety of objectives. Finally,
we construct a schedule using the Apparent Tardiness Cost
(“ATC”) dispatch rule proposed for JS-TWT by Vepsalainen
and Morton (1987). The scaling parameter for the average
processing time in this rule is set to 4 for f = 1.0,1.3, to
3 for f = 1.5, and to 2 for f = 1.7,2.0. For these set-
tings, see Vepsalainen and Morton (1987), Kutanoglu and
Sabuncuoglu (1999). These last four algorithms are all im-

plemented in LEKIN®-Flexible Job-Shop Scheduling Sys-
tem (2002) which allows us to easily test these algorithms
in a stable and user-friendly environment. For these algo-
rithms, we first solve JS-TWT by ignoring the inventory
holding and earliness costs in a given instance. Then, we
compute the corresponding objective value for the job shop
E/T problem with intermediate holding costs by applying
the earliness, tardiness and intermediate inventory holding
costs to the constructed schedule. The results are presented
in Table 3.

For each instance, we calculate the best objective func-
tion value (“B-OFV”) obtained over five alternate algo-
rithms, and all gaps in Table 3 are calculated with respect to
the best available solutions. Furthermore, in order to justify
our benchmarking strategy against algorithms developed for
JS-TWT we compute the minimum total weighted tardiness
cost (“B-TWT”) over all algorithms applied to an instance,
and we report statistics on the ratio of B-TWT to B-OFV in
the first column of Table 3. For f = 1.0,1.3, the average of
the ratio B-TWT/B-OFV is 90.4% and 61.9%, respectively.
Thus, for these instances we expect that the schedules ob-
tained from algorithms designed for JS-TWT perform very
well.

Author's personal copy

J Sched (2013) 16:161–183 173

Table 3 (Continued)

πj ∼ εj · U(100,200)% πj ∼ εj · U(200,400)%

f = 1.7

B-WT/
B-OFV(%)

Gap to B-OFV(%) B-WT/
B-OFV(%)

Gap to B-OFV(%)

SB-TPD LSRW SB-WT Gen-SB ATC SB-TPD LSRW SB-WT Gen-SB ATC

Avg. 1.3 0.0 52.7 54.3 51.2 127.2 2.1 0.0 44.9 47.1 59.4 165.5

Med. 0.0 0.0 48.8 55.0 47.4 119.5 0.0 0.0 38.6 51.5 52.7 150.8

Min 0.0 0.0 19.8 17.2 22.8 57.4 0.0 0.0 5.3 6.3 24.1 92.4

Max 12.1 0.0 90.6 99.3 144.4 282.6 21.3 0.0 96.8 92.0 150.3 350.8

f = 2.0

B-WT/
B-OFV(%)

Gap to B-OFV(%) B-WT/
B-OFV(%)

Gap to B-OFV(%)

SB-TPD LSRW SB-WT Gen-SB ATC SB-TPD LSRW SB-WT Gen-SB ATC

Avg. 0.0 0.0 97.6 116.8 55.6 149.7 0.0 0.0 89.3 106.3 51.5 155.1

Med. 0.0 0.0 99.0 110.3 47.8 132.8 0.0 0.0 77.4 103.9 48.3 136.9

Min 0.0 0.0 33.6 68.4 30.9 76.7 0.0 0.0 30.1 45.6 23.0 88.3

Max 0.0 0.0 245.5 240.9 82.6 314.3 0.0 0.0 244.5 190.2 80.2 373.8

For f = 1.0, LSRW is the best contender. SB-TPD per-
forms on a par with SB-WT, and both of these algorithms
have an average gap of 9–10% from the best available so-
lution. The fact that the tardiness costs dictate the schedule
is also reflected in the gaps obtained by considering tardi-
ness costs only. These figures (not reported here) are close
to their counterparts with inventory holding and earliness
costs. Both Gen-SB and the ATC dispatch rule have aver-
age gaps of more than 40% with respect to the best available
solution.

For f = 1.3, LSRW again outperforms the other algo-
rithms. SB-TBD performs slightly worse than SB-WT. The
average gap of SB-TPD is on average 12.1% and 14.6% with
respect to the best available solution for instances with small
and large tardiness costs, respectively. The corresponding
figures for SB-WT are 10.7% and 11.5%, respectively. Gen-
SB has an average gap of 70.6% and 80.1% with respect to
the best available solution for instances with small and large
tardiness costs, respectively. For ATC, these average gaps
are at 123.0% and 147.4%, respectively.

For f = 1.5, the average of the ratio B-WT to B-OFV
drops to 16.7%. That is, the inventory holding and earliness
costs become crucial. In this case, SB-TPD is superior to all
other algorithms. For small tardiness costs, the average gaps
with respect to the best available solution are 2.3%, 16.2%,
and 21.8% for SB-TPD, LSRW, and SB-WT, respectively.
The corresponding average gaps for large tardiness costs are
obtained as 7.2%, 7.3%, and 14.3%, respectively. The two
other algorithms lag by a large margin as for f = 1.0 and
f = 1.3.

For f = 1.7 and f = 2.0, the tardiness costs can almost
always be totally eliminated. For these instances, SB-TPD

always produces the best schedule. All other algorithms
have average gaps of at least 45% with respect to our al-
gorithm.

In SB-TPD, the time until the best solution identified is
782 seconds on average over all instances with no clear trend
in solution times as a function of f or the relative magnitude
of the unit tardiness costs to the unit earliness costs. How-
ever, on average 68% of this time is spent on calculating the
single-machine cost functions which requires inverting the
optimal basis of the optimal timing problem in the Excel/VB
environment. This time can be eliminated totally if the al-
gorithm is implemented in C/C++ using the corresponding
CPLEX library which provides direct access to the inverse
of the optimal basis. The second main component of the so-
lution time is expended while solving the preemptive relax-
ation of 1/rj /

∑
εjEj +πjTj as part of the single-machine

subproblem and constitutes about 9% of the total solution
time. On the other hand, the time required by CPLEX for
solving the optimal timing problems is only about 4% of
the total time on average. Clearly, SB-TPD has great poten-
tial to provide excellent solutions in short CPU times. Fur-
thermore, by pursuing the different branches of the search
tree on different processors, SB-TPD can be parallelized in
a straightforward manner and the solution times may be re-
duced further.

In general, we expect to obtain high-quality solutions
early during SB-TPD if the subproblem definition is appro-
priate and the associated solution procedure is effective. In
Appendix C, we present a detailed analysis of the rate at
which good incumbent solution are found and improved. In
general, our procedure finds very good solutions (and often
the best solutions found) early during the heuristic run.

Author's personal copy

174 J Sched (2013) 16:161–183

Table 4 Results for the job shop total weighted completion time instances with intermediate inventory holding costs

πj ∼ εj · U(100,200)% πj ∼ εj · U(200,400)%

B-WC/
B-OFV(%)

Gap to B-OFV(%) B-WC/
B-OFV(%)

Gap to B-OFV(%)

SB-TPD LSRW SB-WT Gen-SB WSPT SB-TPD LSRW SB-WT Gen-SB WSPT

Avg. 96.7 2.0 0.4 1.8 10.8 10.7 98.3 1.8 0.4 1.8 9.9 10.1

Med. 96.6 1.9 0.0 1.5 9.8 10.2 98.3 1.8 0.0 1.5 8.1 9.5

Min 95.6 0.0 0.0 0.0 2.3 3.4 97.7 0.0 0.0 0.0 3.2 3.2

Max 97.9 6.7 3.3 5.6 24.6 21.7 98.9 3.9 2.2 6.6 23.7 20.8

4.2 Job shop total weighted completion time problem with
intermediate inventory holding costs

4.2.1 Benchmarking against heuristics

The instances in the previous section are converted into total
weighted completion time instances by setting the due dates
to zero. The same set of algorithms are applied to the result-
ing 44 instances, except that the ATC dispatch rule is sub-
stituted by the Weighted Shortest Processing Time (WSPT)
dispatch rule which is more appropriate for weighed com-
pletion time problems. Note that the WSPT rule imple-
mented in LEKIN®-Flexible Job-Shop Scheduling System
(2002) computes the priority of an operation oij by taking
into account the total remaining processing time of job j .
The results are presented in Table 4.

As in Sect. 4.1.2, we calculate the best objective function
value (“B-OFV”) obtained over five alternate algorithms for
each instance, and the gaps reported in Table 4 are based on
the best available solutions. Statistics on the ratio of the min-
imum total weighted completion time cost (“B-WC”) over
all algorithms to B-OFV are provided in the first column of
Table 4 and justify our benchmarking strategy. For all in-
stances, the ratio B-WC/B-OFV stands above 95%. The job
shop total weighted completion time problem with inven-
tory holding costs appears to be easier in practice compared
to its counterpart with tardiness costs. SB-WT and SB-TPD
perform on a par, while LSRW exhibits slightly better gaps.
For small unit completion time (tardiness) costs, the average
gaps with respect to the best available solution are 2.0%,
0.4%, and 1.8% for SB-TPD, LSRW, and SB-WT, respec-
tively. Doubling the unit completion time costs leads to the
average solution gaps 1.8%, 0.4%, and 1.8% for these three
algorithms, respectively. The two other algorithms Gen-SB
and WSPT are on average about 10% off the best available
solution.

For the total weighted completion time instances with in-
ventory holding costs, SB-TPD takes an average of 817 sec-
onds until the best solution is identified with a similar com-
position to that in Sect. 4.1.2. SB-TPD is very effective for
the job shop total weighted completion time problem with
inventory holding costs. In Appendix C, we again observe

that we typically find good (and often the best found) solu-
tions early in the heuristic run.

4.3 Job shop makespan problem with intermediate
inventory holding costs

4.3.1 Benchmarking against heuristics

The instances in this section are identical to the correspond-
ing total weighted completion time instances except that all
unit completion time costs are set to zero and an appro-
priate unit cost for Cmax is assigned in each instance. In
order to determine this cost parameter γ in the objective
function (6) of (Ĵm), we first run LSRW on a given in-
stance once in order to minimize Cmax, record the resulting
makespan and compute the associated total inventory hold-
ing cost. Then, for each instance with small unit completion
time costs (πj ∼ εj · U(100,200)%) we set γ so that the
total cost C(Cmax) due to the makespan is 50% of the to-
tal cost. The same procedure is repeated for total weighted
completion time instances with large unit completion time
costs (πj ∼ εj · U(200,400)%), and γ is determined so that
90% of the total cost is attributed to Cmax. Thus, we create
a total of 44 instances for the job shop makespan problem
with intermediate inventory holding costs.

SB-TPD, LSRW, Gen-SB, and the Longest Processing
Time (LPT) dispatch rule are applied to each instance. The
original paper Kreipl (2000) solves well-known “hard” in-
stances of Jm//Cmax by LSRW and achieves near-optimal
solutions. This is the reason why LSRW is the algorithm of
choice in setting the γ values as described above. The im-
plementation of the LPT dispatch rule in LEKIN®-Flexible
Job-Shop Scheduling System (2002) takes into account the
processing times of all remaining operations of the asso-
ciated job while determining the priority of an operation.
Therefore, this dispatch rule becomes equivalent to the Most
Work Remaining Rule (MWKR) in the job shop environ-
ment which has been demonstrated to work well for the job
shop makespan problem in the literature (see Demirkol et al.
1997 and Chang et al. 1996 for details). The results are de-
picted in Table 5.

In the first column of Table 5, we report statistics on the
percentage of the total cost attributed to the makespan for

Author's personal copy

J Sched (2013) 16:161–183 175

Table 5 Results for the job shop makespan instances with intermediate inventory holding costs

C(Cmax)/OFV ≈ 0.50 for LSRW C(Cmax)/OFV ≈ 0.90 for LSRW

C(Cmax)/

OFV(%)
Gap to B-OFV(%) C(Cmax)/

OFV(%)
Gap to B-OFV(%)

SB-TPD LSRW Gen-SB LPT SB-TPD LSRW Gen-SB LPT

Avg. 48.4 0.0 25.1 48.1 69.7 89.4 7.5 0.0 11.6 24.3

Med. 49.5 0.0 25.8 43.7 61.4 89.8 7.3 0.0 9.1 23.3

Min 41.3 0.0 6.0 15.7 42.7 86.4 0.0 0.0 4.3 12.0

Max 52.2 0.0 38.2 110.4 134.5 90.8 11.8 0.4 35.0 48.2

the schedules produced by LSRW which is the best compet-
ing algorithm from the literature. This ensures a fair com-
parison of SB-TPD to the other algorithms considered. For
half of the instances, the total inventory holding cost is ap-
proximately 10% of the total cost for LSRW. Thus, for these
instances we expect that the schedules obtained by LSRW
perform very well. For the remaining instances, this ratio—
referred to as the I/T ratio below—is about 50%. If the I/T
ratio is about 10%, LSRW has the best performance. In this
case, the average gaps with respect to the best available
solutions are 7.5%, 0.0%, 11.6%, and 24.3% for SB-TPD,
LSRW, Gen-SB, and LPT, respectively. If the I/T ratio is in-
creased to about 50%, SB-TPD has the best performance for
all instances. In this case, the corresponding average gaps
with respect to the best available solutions are obtained as
0.0%, 25.1%, 48.1%, and 69.7%.

SB-TPD takes an average of 704 seconds until the best
solution is identified for these instances with a similar com-
position to those in Sects. 4.1.2 and 4.2.1. Once again, in
Appendix C, we see that we typically find good (and often
the best found) solutions early in the heuristic run.

5 Concluding remarks

We developed a general method to solve job shop scheduling
problems with objectives that are a function of both job com-
pletion times and intermediate operation completion times.
This class of models is growing in importance as consider-
ations such as holding cost reduction and rescheduling be-
come more important, and our approach works on any job
shop scheduling problem with operation completion time-
related costs and any objective function for which the opti-
mal timing problem can be expressed as a linear program.

We use a decomposition approach to solve our prob-
lem, a variation of the celebrated shifting bottleneck heuris-
tic where the single-machine problems are defined using
the dual variables from a linear program to solve the opti-
mal timing problem of partial schedules. To the best of our
knowledge, this is the first paper utilizing a linear program
combined with a decomposition heuristic in this fashion, and
the first shifting-bottleneck-based heuristic that is broadly

applicable to a large set of objectives without modification.
Our computational study focuses on problems with interme-
diate holding costs and a variety of objectives, and demon-
strates that our approach performs well on problems for
which we can determine optimal solutions, and is compet-
itive with existing less general heuristics designed for spe-
cific problems and objectives, particularly as holding cost
becomes a more significant part of the total cost.

There are several directions in which this research can
be extended. The algorithms can be tested in a variety of
other settings, with different operation-related costs and ob-
jectives. Alternate subproblem solution techniques can be
evaluated. It might be possible to analytically bound the per-
formance of this approach. We are encouraged by the per-
formance of our algorithms, and hope that the framework
outlined in this paper is adopted and extended by other re-
searchers.

Appendix A: Development of εij and πij

Recall that our goal is to demonstrate that the increase in
the optimal objective value of (TTJm)(MS) due to an ad-
ditional constraint (17) or (18) can be bounded from below
by applying sensitivity analysis to the optimal solution of
(TTJm)(MS). This analysis provides the unit earliness and
tardiness costs of job j in the subproblem for machine i de-
noted by εij and πij , respectively. We assume that the linear
program (TTJm)(MS) is solved by the simplex algorithm,
and an optimal basic sequence B is available at the begin-
ning of the current iteration.

Before we proceed with the analysis, we note that
(TTJm)(MS) is an LP in standard form:

min cx (20)

Ax = b (21)

x ≥ 0 (22)

where A is an (m × n) matrix of the coefficients of the
structural constraints, c is a (1 × n) row vector of the ob-
jective coefficients, and b is an (m × 1) column vector of
the right hand side coefficients. Given a basic sequence B

Author's personal copy

176 J Sched (2013) 16:161–183

corresponding to the indices of the m basic variables and
the associated nonbasic sequence N , we also define AB as

the basis matrix, x̄ = (x̄B
x̄N

) =
(

A−1
B b

0

)
= (

b̄
0

)
as the basic

solution, ȳ = cB A−1
B as the vector of dual variables, c̄ =

c − ȳA as the vector of reduced costs, and Ā = (ĀB ĀN) =
(A−1

B AB A−1
B AN) = (I ĀN). An optimal basic sequence

B satisfies the conditions:

Ax̄ = b, x̄ ≥ 0 (primal feasibility), (23)

c̄ ≥ 0 (dual feasibility), (24)

c̄x̄ = 0 (or cx̄ = ȳb) (complementary slackness). (25)

In our notation, Zi. and Z.j denote the ith row and j th col-
umn of a matrix Z, respectively.

Now, assume that (TTJm)(MS) is solved by the simplex
method, and an optimal basic sequence B is available along
with the optimal operation completion times C∗

ij . Then, we
either add

Cij + sij = dij − δ

sij ≥ 0
or

Cij − sij = dij + δ

sij ≥ 0
(26)

to this model, where dij = C∗
ij . In either case, the model

is expanded by one more constraint and one more variable,
and the current optimal solution does not satisfy (26) be-
cause δ is strictly greater than zero and sij ≥ 0 is required.
However, we can easily construct a new basic solution to
restart the optimization. This basic solution violates primal
feasibility (23) while preserving dual feasibility (24) as we
show below. Thus, we can continue with the dual simplex
method in order to find the next optimal solution. In the re-
mainder of this section, we demonstrate that the first itera-
tion of the dual simplex method can be performed implicitly
based on data readily available in the optimal basic solu-
tion of (TTJm)(MS). In addition, the dual variable associ-
ated with (26) obtained from this iteration provides us with
the unit earliness or tardiness cost for job j in the single-
machine subproblem of machine i.

The updated problem data after adding (26) and sij are
denoted by a prime:

A′ =
(

A 0
A(m+1). 1

)
or A′ =

(
A 0

A(m+1). −1

)
,

b′ =
(

b
bm+1

)
=

(
b

dij − δ

)
or

b′ =
(

b
bm+1

)
=

(
b

dij + δ

)
,

c′ = (c cn+1) = (c 0),

where the last column in A′ corresponds to the (n + 1)st
variable sij , A(m+1). represents the coefficients of the orig-
inal variables in the (m + 1)st constraint (26), bm+1 is the

right hand side of (26), and cn+1 is the objective coefficient
of sij . In order to compute a basic solution, we need to as-
sociate a basic variable with (26). A natural candidate is
the slack/surplus variable sij which leads to the new basic
sequence B′ = B ∪ {n + 1}. Then, the basis matrix is con-
structed as

A′
B′ =

(
AB 0

Am+1,B 1

)
or A′

B′ =
(

AB 0
Am+1,B −1

)
,

(27)

where the last column corresponds to sij and Am+1,B =
(0 0 . . . 1 . . . 0 0) is a (1×m) row vector of the coefficients
of the basic variables B in (26). Clearly, the coefficient 1
in Am+1,B corresponds to Cij because the completion time
variables are always positive and basic. Assuming that Cij

is the j th basic variable, the inverse of the basis is obtained
as

(A′
B′)−1 =

(
A−1

B 0

−Am+1,B A−1
B 1

)

=
(

A−1
B 0

−(A−1
B)j. 1

)
or

(A′
B′)−1 =

(
A−1

B 0

Am+1,B A−1
B −1

)

=
(

A−1
B 0

(A−1
B)j. −1

)

(28)

where (A−1
B)j. is the row of A−1

B associated with the basic
variable Cij . The resulting basic solution is

x̄′ =
(

x̄′
B′

x̄′
N ′

)
=

(
b̄′

0

)
=

(
(A′

B′)−1b′

0

)
=

⎛

⎜⎝
b̄

−δ

0

⎞

⎟⎠ (29)

in both cases and violates primal feasibility because the new
basic variable sij = −δ is strictly negative. Similarly, we
compute

ȳ′ = c′
B′(A′

B′)−1 = (cB 0)(A′
B′)−1 = (ȳ 0) (30)

and

c̄′ = c′ − ȳ′A′ = (c 0) − (ȳ 0)A′ = (c̄ 0) (31)

in both cases. Note that c̄′ ≥ 0 since c̄ ≥ 0 because B is an
optimal basic sequence for (TTJm)(MS). Thus, B′ is pri-
mal infeasible and dual feasible which suggests that we can
continue with the dual simplex method. The basic variable
sij < 0 is the only candidate for the leaving variable. The
entering variable t is determined by the following ratio test

Author's personal copy

J Sched (2013) 16:161–183 177

in the dual simplex method:

c̄′
t

Ā′
(m+1)t

= max
k|Ā′

(m+1)k
<0

c̄′
k

Ā′
(m+1)k

(32)

where Ā′
(m+1). = (A′

B′)
−1
(m+1).A

′. Plugging in the appropriate

expressions for (A′
B′)

−1
(m+1). from (28) and A′ leads to the

following explicit set of formulas for Ā′
(m+1).:

Ā′
(m+1)k

=

⎧
⎪⎨

⎪⎩

−Ājj + 1 = 0 for Cij

1 for sij

−Ājk o/w

⎫
⎪⎬

⎪⎭
or

Ā′
(m+1)k =

⎧
⎪⎨

⎪⎩

Ājj − 1 = 0 for Cij

1 for sij

Ājk o/w

⎫
⎪⎬

⎪⎭
.

(33)

Recall that sij is the basic variable associated with row
m + 1, and hence Ā′

(m+1)(n+1) = 1 must hold as above. In

addition, all components of Ā′
(m+1). corresponding to the

remaining basic variables must be zero, including those cor-
responding to the completion time variables. Inserting (31)
and (33) into (32), the ratio test takes the form:

c̄′
t

Ā′
(m+1)t

= max
k �=j |Ājk>0

c̄k

−Ājk

= c̄t

−Āj t

≤ 0 or

c̄′
t

Ā′
(m+1)t

= max
k|Ājk<0

c̄k

Ājk

= c̄t

Āj t

≤ 0.

(34)

The crucial observation is that all quantities required to per-
form the ratio test (34) are computed based on the current
optimal basic sequence B of (TTJm)(MS).

Replacing sij by variable t in the basic sequence B′ leads
to the new basic sequence B′′ = B ∪ {t}. Next, we can carry
out the pivoting operations in the simplex method. Here, we
only need the updated dual variables ȳ′′ and the new objec-
tive function value. The dual variables are determined using
the formula

ȳ′′ = ȳ′ + c̄′
t

Ā′
(m+1)t

(A′
B′)−1

(m+1).. (35)

Plugging in the relevant expressions, we obtain

ȳ′′ = (ȳ 0) − c̄t

Āj t

(−(
A−1

B
)
j.

1
)

=
(

ȳ + c̄t

Āj t

(
A−1

B
)
j.

− c̄t

Āj t

)
or (36)

ȳ′′ = (ȳ 0) + c̄t

Āj t

((
A−1

B
)
j.

−1
)

=
(

ȳ + c̄t

Āj t

(
A−1

B
)
j.

− c̄t

Āj t

)
. (37)

Based on the conditions of the ratio test (34), we observe that
the dual variable ȳ′′

m+1 associated with the new constraint
(26) is nonpositive for Cij + sij = dij − δ (Cij ≤ dij − δ)
and nonnegative for Cij − sij = dij + δ (Cij ≥ dij + δ), as
expected. We also note that information already present in
the optimal basic solution of (TTJm)(MS) is sufficient to
compute ȳ′′. Then, the objective value associated with B′′ is
calculated by

ȳ′′b′ =
(

ȳ + c̄t

Āj t

(
A−1

B
)
j.

− c̄t

Āj t

)(
b

dij − δ

)

= ȳb + c̄t

Āj t

(
A−1

B
)
j.

b − c̄t

Āj t

(dij − δ)

= ȳb + c̄t

Āj t

δ = ȳb − ȳ′′
m+1δ ≥ ȳb

(because ȳ′′
m+1 ≤ 0 and δ > 0) (38)

or

ȳ′′b′ =
(

ȳ + c̄t

Āj t

(
A−1

B
)
j.

− c̄t

Āj t

)(
b

dij + δ

)

= ȳb + c̄t

Āj t

(
A−1

B
)
j.

b − c̄t

Āj t

(dij + δ)

= ȳb − c̄t

Āj t

δ = ȳb + ȳ′′
m+1δ ≥ ȳb

(because ȳ′′
m+1 ≥ 0 and δ > 0), (39)

where (A−1
B)j.b = C∗

ij = dij since (A−1
B)j.b provides the

optimal value of the j th basic variable in (TTJm)(MS).
Finally, we prove Proposition 3.1, our main result in this

section, which allows us to specify the appropriate E/T

cost parameters in the single-machine subproblems. Con-
sider two successive iterations k and k + 1 of SB-TPD. In it-
eration k, the optimal timing problem (TTJm)(MS) yields
an optimal objective value z(TTJm)(MS) and the optimal
completion times C∗

ij for all j and for all i = 1, . . . ,mj .

Next, machine ib is selected to be scheduled, and the op-
timal timing problem (TTJm)(MS ∪ {ib}) is solved pro-
viding a new set of optimal completion times C′

ij for all j

and for all i = 1, . . . ,mj . Then, Proposition 3.1, which we
repeat below for completeness, establishes a lower bound
on the increase in the objective value of the optimal timing
problem from iteration k to k + 1.

Proposition 3.1 Consider the optimal timing problems
(TTJm)(MS) and (TTJm)(MS ∪ {ib}) solved in iter-
ations k and k + 1 of SB-TPD where ib is the bottle-
neck machine in iteration k. For any operation oibj , if
C′

ibj
= Cibj − δ or C′

ibj
= Cibj + δ for some δ > 0, then

Author's personal copy

178 J Sched (2013) 16:161–183

z(TTJm)(MS ∪ {ib}) − z(TTJm)(MS) ≥ |ȳ′′
m+1|δ ≥ 0, where

ȳ′′ is as defined in (36)–(37).

Proof We refer to the optimal timing problem (TTJm)(MS)
with the appropriate additional constraint Cibj ≤ dibj − δ or
Cibj ≥ dibj + δ as (TTJm)′(MS). The optimal objective
value of (TTJm)′(MS) is denoted by z(TTJm)′(MS).

The optimal solution of (TTJm)(MS ∪ {ib}) satisfies
all constraints present in (TTJm)′(MS), in addition to the
machine capacity constraints for machine ib . Therefore,
z(TTJm)(MS ∪ {ib}) can be no less than z(TTJm)′(MS),
and we can prove the desired result by showing that
z(TTJm)′(MS) ≥ z(TTJm)(MS)− ȳ′′

m+1δ or z(TTJm)′(MS) ≥
z(TTJm)(MS)+ ȳ′′

m+1δ as appropriate. Clearly, we can solve
(TTJm)′(MS) by starting from the optimal solution of
(TTJm)(MS) and applying the dual simplex method as
discussed above. From (38)–(39), we already know that
the increase in the objective function in the first itera-
tion of the dual simplex method is at least −ȳ′′

m+1δ ≥
0 or +ȳ′′

m+1δ ≥ 0 if Cibj ≤ dibj − δ or Cibj ≥ dibj +
δ is added to (TTJm)(MS), respectively. The proof is
completed by noting that the dual simplex method pro-
duces non-decreasing objective values over the iterations.
So, we have z(TTJm)(MS ∪ {ib}) ≥ z(TTJm)′(MS) ≥
z(TTJm)(MS) − ȳ′′

m+1δ or z(TTJm)(MS ∪ {ib}) ≥
z(TTJm)′(MS) ≥ z(TTJm)(MS) + ȳ′′

m+1δ as desired. �

Based on Proposition 3.1, if the completion time of oibj

decreases by δ time units in the optimal timing problem
after inserting some set of disjunctive arcs on machine ib ,
then the increase in the optimal objective function is no
less than −ȳ′′

m+1δ. This allows us to interpret the quantity
−ȳ′′

m+1 as the unit earliness cost of operation oibj in the sub-

problem of machine ib , i.e., we set εij = −ȳ′′
m+1 = c̄t

Āj t
=

−maxk �=j |Ājk>0
c̄k

−Ājk
as in (19). A similar argument leads

to πij = ȳ′′
m+1 = − c̄t

Āj t
= −maxk|Ājk<0

c̄k

Ājk
for the corre-

sponding unit tardiness cost.
Next, we investigate whether the approach presented here

can be extended to multiple implicit dual simplex iterations
that would allow us to construct a better approximation of
the actual cost function for Cij depicted in Fig. 2. To this
end, using the formula

c̄′′ = c̄′ − c̄′
t

Ā′
(m+1)t

Ā′
(m+1). (40)

and inserting the expressions for c̄′ and Ā′
(m+1). from (31)

and (33) respectively, we first calculate the set of reduced
costs c̄′′ resulting from the first pivoting operation:

c̄′′
k =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c̄k − c̄t

−Āj t
· 0 = 0 for Cij

c̄k − c̄t

−Āj t
· 1 = c̄t

Āj t
for sij

c̄k − c̄t

Āj t
Ājk o/w

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
or

c̄′′
k =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c̄k − c̄t

Āj t
· 0 = 0 for Cij

c̄k − c̄t

Āj t
· 1 = − c̄t

Āj t
for sij

c̄k − c̄t

Āj t
Ājk o/w

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
,

(41)

where all required quantities are readily available in the op-
timal basic solution of (TTJm)(MS) as before. We also ob-
serve that the updated reduced cost of sij is nonnegative in
both cases as required in the dual simplex method. Then, b̄′′
is computed based on:

b̄′′
i =

⎧
⎪⎨

⎪⎩

b̄′
i − Ā′

it

Ā′
(m+1)t

b̄′
m+1 i �= m + 1

1
Ā′

(m+1)t

b̄′
m+1 i = m + 1

⎫
⎪⎬

⎪⎭
. (42)

Substituting b̄′ and Ā′
(m+1)t

from (29) and (33) respectively,
we obtain the new values of the basic variables:

b̄′′
i =

⎧
⎨

⎩
b̄i + Ā′

it

−Āj t
δ i �= m + 1

δ

Āj t
i = m + 1

⎫
⎬

⎭ or

b̄′′
i =

⎧
⎨

⎩
b̄i + Ā′

it

Āj t
δ i �= m + 1

−δ

Āj t
i = m + 1

⎫
⎬

⎭ ,

(43)

where b̄′′
m+1 > 0 in both cases for the new basic vari-

able t . Until now, we have only used information that is
readily available in the current basic optimal solution of
(TTJm)(MS) and made no assumptions other than linearity
regarding the specific objective or constraints of the job shop
scheduling problem (Jm). However, computing (43) cannot
be accomplished without compromising the generality of the
analysis. Observe that the entering variable t is determined
by the ratio test in (34) and may be different for each oper-
ation oij . Furthermore, in (43) we have Ā′

.t = (A′
B′)−1A′

.t ,
where the entries of A′

.t are given by the specific formula-
tion under consideration. Consequently, the next basic se-
quence B′′, the associated values for the basic variables, and
the resulting leaving variable all depend on oij and the spe-
cific job shop problem of interest. We conclude that we no
longer have a single basis that allows us to compute all re-
quired quantities as efficiently as in (19). Estimating the ac-
tual cost function in Fig. 2 more accurately boils down to
solving an LP with a parametric right hand side per opera-
tion oij , i ∈ M \ MS , j ∈ Ji . We refrain from this in order
to retain the generality of our proposed approach and avoid
the extra computational burden. Furthermore, our numerical
results in Sect. 4 clearly demonstrate that the information

Author's personal copy

J Sched (2013) 16:161–183 179

retrieved from the subproblems is sufficiently accurate in a
great majority of cases.

Appendix B: Computing εij and πij efficiently

A fundamental implementation issue is computing the cost
coefficients εij and πij in the single-machine subproblems
efficiently. The analysis in Appendix A reveals that the only
information required to this end is the reduced costs of the
nonbasic variables and the rows of Ā associated with the
completion time variables in a basic optimal solution of the
current optimal timing problem. This information may be
directly available from the linear programming solver em-
ployed to solve the optimal timing problem. Otherwise, the
computational burden of computing A−1

B renders this step

time consuming. In this section, we show how A−1
B and Ā

can be computed efficiently for (̂TTJm) by exploiting the
structure and sparsity of A. In this analysis, we only assume
that the basic sequence B and the corresponding nonbasic
sequence N associated with the optimal basis of the current
timing problem are available. Denoting the number of oper-
ations by t = ∑n

j=1 mj , we note that the optimal basis is a
q × q matrix and has the following block form:

AB =
(

T U
V W

)
, (44)

where T is a t × t square matrix composed of the coeffi-
cients of the completion time variables (all completion time
variables are always basic) in the ready time and operation
precedence constraints (2)–(3), U is a t × (q − t) matrix of
the coefficients of the remaining basic variables in the same
constraints, V is a (q − t) × t matrix of the coefficients of
the completion time variables in the last q − t constraints
(7), (8), (12), and W is a (q − t) × (q − t) matrix of the co-
efficients of the remaining basic variables in the same con-
straints. Then, A−1

B is obtained as

A−1
B =

(
T−1 + T−1UZ−1VT−1 −T−1UZ−1

−Z−1VT−1 Z−1

)
, (45)

where Z = W − VT−1U is the Schur complement of T. It is
a simple exercise to show that T is invertible, and Z must be
invertible because AB is invertible. An important property of
(̂TTJm) is that all variables in (̂TTJm) except for the com-
pletion time variables and the makespan variable are either
slack or surplus variables with a single nonzero coefficient
in the corresponding column of A.

For computing the values of εij and πij for an opera-
tion oij as defined in (19), we only need the entries of the
row Āj. = (A−1

B)j.A corresponding to the nonbasic vari-
ables, where Cij is the j th basic variable as in Appendix A.

We denote these entries by Āj N . Thus, computing the cost
coefficients in all single-machine subproblems requires no
more than computing the first t rows of Ā given by the first
row of (45). We detail the steps of this task below, where
representing a matrix M in sparse form refers to storing the
nonzero entries of M column by column in a single vector
while the corresponding row indices are saved in a separate
vector. A third vector holds a pointer to the last entry of each
column in the other two vectors.

T−1 is computed only once during the initialization of
the algorithm and saved in sparse form. Then, we perform
the following steps each time we need to set up the single-
machine subproblems after optimizing (̂TTJm):

1. Store U in sparse form by noting that all nonzero coeffi-
cients in U correspond to the waiting time variables.

2. Compute VT−1 row by row in dense form by observing
the following:
(a) In a row of V corresponding to a due date constraint

(7) or a Cmax constraint (8) for job j , there is a single
entry +1 in the column corresponding to Cmj j .

(b) A row of V corresponding to a machine capacity con-
straint (12) includes exactly two nonzero coefficients
+1 and −1 corresponding to two consecutive opera-
tions performed on the same machine.

3. Compute −VT−1U in dense form by re-arranging the
columns of VT−1 and observing the following:
(a) There is exactly a single nonzero entry +1 or −1 in

the columns of U corresponding to the waiting time
variables.

(b) All other columns of U are identical to zero.
4. Compute Z = W−VT−1U in dense form. W is retrieved

column by column in sparse form, and the nonzero en-
tries are added to the appropriate entries of −VT−1U
calculated in the previous step. We can completely dis-
regard the waiting time variables in this step because the
associated coefficients in W are all zero.

5. Compute Z−1.
6. Compute T−1UZ−1 and −T−1UZ−1 in dense form:

(a) The nonzero entries in a given row of T−1U may
be determined by using T−1 and U already stored in
sparse form. Since there is at most a single nonzero
entry in each column of U, we can traverse the
columns of T−1 in the order specified by the asso-
ciated row indices of the nonzero entries in U and
easily calculate the nonzero entries of T−1U in the
specified row.

(b) T−1UZ−1 and −T−1UZ−1 are then computed row
by row in dense form by taking linear combinations
of the rows of Z−1 as specified by the nonzero entries
in the rows of T−1U calculated above.

7. Compute T−1 +T−1UZ−1VT−1 in dense form by multi-
plying T−1UZ−1 and VT−1, and then adding T−1 avail-
able in sparse form to the result.

Author's personal copy

180 J Sched (2013) 16:161–183

Fig. 3 The progress of the solution gaps with respect to the best available solution for the job shop total weighted E/T problem with intermediate
inventory holding costs

Author's personal copy

J Sched (2013) 16:161–183 181

Fig. 4 The progress of the solution gaps with respect to the best available solution for the job shop total weighted completion time problem with
intermediate inventory holding costs

8. For the objective function coefficients of the operations
in the single-machine subproblems, we need to compute
the first t rows of Ā.N = A−1

B A.N . This is performed col-

umn by column for each k ∈ N . We have Ā.k = A−1
B A.k ,

where A.k includes a single nonzero entry +1 or −1 be-
cause all nonbasic variables in (̂TTJm) are either slack
or surplus variables. Thus, we simply need to retrieve
the first t entries in the proper column of A−1

B com-
puted previously and multiply them with −1 if neces-
sary.

Appendix C: Solution quality vs. time

C.1 Job shop total weighted E/T problem with
intermediate inventory holding costs

To investigate the behavior of SB-TPD over the course of
the algorithm, we present a detailed analysis of the solution
quality versus the solution time and the number of feasible
schedules constructed in SB-TPD in Fig. 3.

To this end, we take a snapshot of the optimality gaps
after 60, 120, 180, 300, 450, and 600 seconds of solution
time and depict the empirical cumulative distributions of
these gaps for f = 1.0,1.3, f = 1.5, and f = 1.7,2.0 in
Figs. 3(a), 3(c), and 3(e), respectively. In these figures, gaps
larger than 100% appear as 100%. After 120 seconds of so-
lution time, 4.5% (4 out of 88), 27.3% (12 out of 44), and
73.9% (65 out of 88) of the instances are within 10% of the
best solution for f = 1.0,1.3, f = 1.5, and f = 1.7,2.0,
respectively. The corresponding figures after 300 seconds of
solution time are obtained as 14.8% (13 out of 88), 54.5%
(24 out of 44), and 89.8% (79 out of 88). For f = 1.0,1.3,

the gaps are no more than 5% and 10% for 13.6% (12 out
of 88) and 27.3% (24 out of 88) of the instances after 600
seconds of solution time, respectively. For f = 1.5, 40.9%
(18 out of 44) and 65.9% (29 out of 44) of the instances are
within 3% and 10% of the best solution after 600 seconds
of solution time, respectively. For f = 1.7,2.0, the best so-
lution is obtained for 44.3% (39 out of 88) of the instances
in 600 seconds of solution time, and the gap is within 5%
for 85.2% (75 out of 88) of the instances while this number
increases to 95.5% (84 out of 88) for a gap of at most 10%.
Similar figures are produced for the number feasible sched-
ules constructed in SB-TPD and appear on the right hand
side in Fig. 3. Note that each leaf node in the search tree in
SB-TPD corresponds to a feasible schedule for (Ĵm). Intu-
itively, if the shifting bottleneck framework performs well,
then good solutions should be identified early in the search
tree. These figures indicate that with as few as 100 feasible
schedules constructed over the entire course of the algorithm
high-quality solutions are obtained. Furthermore, these fig-
ures attest to the enhanced performance of our heuristic as
f grows. With increasing f , we come across excellent solu-
tions very early in the algorithm. For instance, for f = 1.5
the best available solutions are identified in more than 20%
of the instances with at most 20 feasible schedules. This fig-
ure increases to above 25% for f = 1.7,2.0.

C.2 Job shop total weighted completion time problem with
intermediate inventory holding costs

For this case, we see in Fig. 4(b) that the very first sched-
ule constructed achieves a gap of no more than 10% with
respect to the best available solution in more than 1/3 of the
instances. With at most 10 feasible schedules constructed,

Author's personal copy

182 J Sched (2013) 16:161–183

Fig. 5 The progress of the solution gaps with respect to the best available solution for the job shop makespan problem with intermediate inventory
holding costs

the gap is reduced to less than 5% in more than 50% of the
instances.

C.3 Job shop makespan problem with intermediate
inventory holding costs

The effectiveness of SB-TPD for this problem is readily ap-
parent from Fig. 5(b). The very first schedule constructed is
no more than 15% away from the best known solution for
30% (13 out of 44) of the instances. With at most 10 feasi-
ble schedules constructed, this gap falls below 10% in 50%
of the instances.

References

Adams, J., Balas, E., & Zawack, D. (1988). The shifting bottleneck
procedure for job shop scheduling. Management Science, 34(3),
391–401.

Asadathorn, N. (1997). Scheduling of assembly type of manufacturing
systems: algorithms and systems developments. PhD thesis, De-
partment of Industrial Engineering, New Jersey Institute of Tech-
nology, Newark, NJ.

Avci, S., & Storer, R. (2004). Compact local search neighborhoods for
generalized scheduling. Working paper.

Bulbul, K. (2002). Just-in-time scheduling with inventory holding
costs. PhD thesis, University of California at Berkeley.

Bulbul, K. (2011). A hybrid shifting bottleneck-tabu search heuris-
tic for the job shop total weighted tardiness problem. Comput-
ers & Operations Research, 38(6), 967–983. http://dx.doi.org/
10.1016/j.cor.2010.09.015

Bulbul, K., Kaminsky, P., & Yano, C. (2004). Flow shop scheduling
with earliness, tardiness and intermediate inventory holding costs.
Naval Research Logistics, 51(3), 407–445.

Bulbul, K., Kaminsky, P., & Yano, C. (2007). Preemption in single ma-
chine earliness/tardiness scheduling. Journal of Scheduling, 10(4–
5), 271–292.

Chang, S.-C., & Liao, D.-Y. (1994). Scheduling flexible flow shops
with no setup effects. IEEE Transactions on Robotics and Au-
tomation, 10(2), 112–122.

Chang, Y. L., Sueyoshi, T., & Sullivan, R. (1996). Ranking dispatching
rules by data envelopment analysis in a jobshop environment. IIE
Transactions, 28(8), 631–642.

Demirkol, E., Mehta, S., & Uzsoy, R. (1997). A computational study
of shifting bottleneck procedures for shop scheduling problems.
Journal of Heuristics, 3(2), 111–137.

Dyer, M., & Wolsey, L. (1990). Formulating the single machine se-
quencing problem with release dates as a mixed integer program.
Discrete Applied Mathematics, 26(2–3), 255–270.

Graham, R., Lawler, E., Lenstra, J., & Rinnooy Kan, A. (1979). Op-
timization and approximation in deterministic sequencing and
scheduling: a survey. Annals of Discrete Mathematics, 5, 287–
326.

Jayamohan, M., & Rajendran, C. (2004). Development and analysis of
cost-based dispatching rules for job shop scheduling. European
Journal of Operations Research, 157(2), 307–321.

Kaskavelis, C., & Caramanis, M. (1998). Efficient Lagrangian relax-
ation algorithms for industry size job-shop scheduling problems.
IIE Transactions, 30(11), 1085–1097.

Kedad-Sidhoum, S., & Sourd, F. (2010). Fast neighborhood search for
the single machine earliness-tardiness scheduling problem. Com-
puters & Operations Research, 37(8), 1464–1471.

Kreipl, S. (2000). A large step random walk for minimizing total
weighted tardiness in a job shop. Journal of Scheduling, 3(3),
125–138.

Kutanoglu, E., & Sabuncuoglu, I. (1999). An analysis of heuristics in
a dynamic job shop with weighted tardiness objectives. Interna-
tional Journal of Production Research, 37(1), 165–187.

Laha, D. (2007). Heuristics and metaheuristics for solving scheduling
problems. In D. Laha & P. Mandal (Eds.), Handbook of Compu-
tational Intelligence in Manufacturing and Production Manage-
ment (Chap. 1, pp. 1–18). Hershey: Idea Group.

LEKIN®-Flexible Job-Shop Scheduling System (2002). Version 2.4.
http://www.stern.nyu.edu/om/software/lekin/index.htm.

Lenstra, J., Rinnooy Kan, A., & Brucker, P. (1977). Complexity of ma-
chine scheduling problems. Annals of Discrete Mathematics, 1,
343–362.

Author's personal copy

http://dx.doi.org/10.1016/j.cor.2010.09.015
http://dx.doi.org/10.1016/j.cor.2010.09.015
http://www.stern.nyu.edu/om/software/lekin/index.htm

J Sched (2013) 16:161–183 183

Mason, S., Fowler, J., & Carlyle, W. (2002). A modified shifting bottle-
neck heuristic for minimizing total weighted tardiness in complex
job shops. Journal of Scheduling, 5(3), 247–262.

Ohta, H., & Nakatanieng, T. (2006). A heuristic job-shop scheduling
algorithm to minimize the total holding cost of completed and in-
process products subject to no tardy jobs. International Journal of
Production Economics, 101(1), 19–29.

Ovacik, I. M., & Uzsoy, R. (1996). Decomposition methods for com-
plex factory scheduling problems. Berlin: Springer.

Park, M.-W., & Kim, Y.-D. (2000). A branch and bound algorithm for
a production scheduling problem in an assembly system under
due date constraints. European Journal of Operations Research,
123(3), 504–518.

Pinedo, M., & Singer, M. (1999). A shifting bottleneck heuristic for
minimizing the total weighted tardiness in a job shop. Naval Re-
search Logistics, 46(1), 1–17.

Singer, M. (2001). Decomposition methods for large job shops. Com-
puters & Operations Research, 28(3), 193–207.

Sourd, F. (2009). New exact algorithms for one-machine earliness-
tardiness scheduling. INFORMS Journal on Computing, 21(1),
167–175.

Tanaka, S., & Fujikuma, S. (2008). An efficient exact algorithm for
general single-machine scheduling with machine idle time. In
IEEE international conference on automation science and engi-
neering, 2008. CASE 2008 (pp. 371–376).

Thiagarajan, S., & Rajendran, C. (2005). Scheduling in dynamic as-
sembly job-shops to minimize the sum of weighted earliness,
weighted tardiness and weighted flowtime of jobs. Computers and
Industrial Engineering, 49(4), 463–503.

Vepsalainen, A. P. J., & Morton, T. E. (1987). Priority rules for job
shops with weighted tardiness costs. Management Science, 33(8),
1035–1047.

Xhafa, F., & Abraham, A. (Eds.) (2008). Studies in computational in-
telligence: Vol. 128. Metaheuristics for scheduling in industrial
and manufacturing applications. Berlin: Springer.

Author's personal copy

	A linear programming-based method for job shop scheduling
	Abstract
	Introduction
	Problem description
	Solution approach
	The timing problem
	Disjunctive graph representation
	Key steps of the algorithm
	The single-machine problem
	Selecting the bottleneck machine
	Rescheduling
	Tree search

	Computational experiments
	Job shop total weighted E/T problem with intermediate inventory holding costs
	Benchmarking against the TI formulation
	Benchmarking against heuristics

	Job shop total weighted completion time problem with intermediate inventory holding costs
	Benchmarking against heuristics

	Job shop makespan problem with intermediate inventory holding costs
	Benchmarking against heuristics

	Concluding remarks
	Appendix A: Development of epsilonij and piij
	Appendix B: Computing epsilonij and piij efficiently
	Appendix C: Solution quality vs. time
	Job shop total weighted E/T problem with intermediate inventory holding costs
	Job shop total weighted completion time problem with intermediate inventory holding costs
	Job shop makespan problem with intermediate inventory holding costs

	References

