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Desautels Faculty of Management, McGill University, Montreal, Quebec H3A 1G5, Canada,

mehmet.gumus@mcgill.ca

Philip Kaminsky
Department of Industrial Engineering and Operations Research, University of California, Berkeley,

Berkeley, California 94720, kaminsky@ieor.berkeley.edu

We introduce and analyze a model that explicitly considers the timing effect of intertemporal pricing—
the concept, found in practice, that demand during a sale is increasing in the time since the last sale.

We present structural results that characterize the interaction between the decision to hold a sale and the
inventory-ordering decision. We show that the optimal inventory-ordering policy is a state-dependent base-
stock policy; however, the optimal pricing policy can be quite complicated due to both the value and the cost
of holding inventory and delaying sales. In our computational analysis, we find that compared to a fixed-price
policy, we see an average gain in profit of almost 5% from optimally varying promotion and inventory decisions
accounting for intertemporal demand, and we find that this potential profit gain increases as demand variability
decreases. We also develop a heuristic based on deterministic pricing and find that it performs well relative to
the optimal policy.
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1. Introduction
The success of dynamic pricing and revenue manage-
ment in the air travel, hotel, and car rental indus-
tries has naturally led to the desire to extend these
concepts to other industries, including those with
nonperishable products and inventory replenishment.
In the past, the applications of these tools have
been primarily limited to markdowns and promo-
tion pricing to eliminate excess inventory of seasonal
products, or products with short life cycle. However,
as data-processing technology and e-commerce have
spread, dynamic pricing has become more accessible
as a tool to help retailers better match supply with
demand and increase operating profit. Many of the
assumptions, models, and results of traditional rev-
enue management settings have to be modified for
these sometimes very different environments. In par-
ticular, in an environment in which inventory can
be replenished and customers have multiple oppor-
tunities to buy the same product, effective ordering

and pricing strategies must account for intertemporal
demand interaction.
In this context, intertemporal demand interaction

refers to the sensitivity of current demand not only
to current pricing, but also to past pricing decisions.
A quick review of the advertising circulars in the
Sunday paper suggests that retailers use price reduc-
tions for more than just eliminating excess inventory
of out-of-season products—these retailers are instead
attempting to benefit from intertemporal demand
interactions in order to increase profits. This notion of
intertemporal demand interaction is elegantly mod-
eled and empirically validated by Pesendorfer (2002).
Motivated by data he collects from supermarket
chains, Pesendorfer models high-valuation customers
who make purchases at the regular retail price when
they enter the market, and low-valuation customers
who may remain in the market to see if a sale
is offered. Focusing initially on ketchup sales, he
finds that the demand level is significantly higher
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if previous prices were relatively high than if they
were low, and that the level of demand during a sale
increases in the time since the last sale in the store.
Pesendorfer presents a deterministic model where a
fixed number of low- and high-valuation customers
enter the market each period, and shows that period-
ically offering sales is the optimal retailer’s strategy.
He then validates his findings with further empiri-
cal analysis. We call Pesendorfer’s observation that
demand increases in the depth of discount the level
effect, and in Ahn et al. (2007) we build a determin-
istic model to explore the impact of the level effect
on production and pricing policy in a capacitated sys-
tem. We call Pesendorfer’s observation that demand
under the sale price increases in the time since the last
sale the timing effect, and in this paper, we propose
a stochastic demand model consistent with Pesendor-
fer’s findings in order to increase our understanding
of the impact of the timing effect on optimal inven-
tory replenishment policy.
In this paper, we present a stylized model that

assesses the impact of coordinating inventory order-
ing policy and the timing of sales in the presence of
intertemporal demand effects. In particular, we explic-
itly capture the impact of the time since the last time
a sale price was offered on the demand at a given sale
price, and show that the presence of inventory has a
nontrivial effect on dynamic pricing decisions.
Marketing researchers as well as economists have

studied temporal price dispersion; however, most of
this literature has focused on the effects of intertem-
poral demand interactions on pricing decisions while
ignoring inventory considerations. Conlisk et al.
(1984) and Sobel (1984, 1991) consider durable goods
markets where low-valuation customers accumulate
and wait for a sale. They show that firms engage
in cyclic pricing behavior, employing a traditional
“skimming” strategy where high-valuation customers
are “skimmed off the top” with higher prices, and
then low-valuation customers are charged lower
prices later in each cycle. Others consider stockpil-
ing behavior (Assuncao and Meyer 1993), change in
customer’s goodwill (Slade 1998, 1999), and informa-
tion asymmetry and competition (Varian 1980) as key
drivers of intertemporal price dispersion. In contrast
to these papers, our paper explicitly considers the
interplay of inventory and pricing decisions.

The revenue management literature accounts for
the impact of inventory position on pricing deci-
sions, but typically does not allow for inventory
replenishment (e.g., Gallego and van Ryzin 1994 and
Bitran and Mondschein 1997). Although there are
a few recent papers that deal with more sophisti-
cated consumer behavior (e.g., Aviv and Pazgal 2008,
Elmaghraby et al. 2008, Su 2007, and Zhou et al. 2007),
almost all of them—with the exception of Cachon
and Swinney (2009), who allow initial replenishment
before the selling season and a one-time quick-
response replenishment during the selling season—
assume no replenishment during the selling season,
and thus do not consider inventory/production fac-
tors. In contrast, our paper explicitly considers the
interplay of inventory replenishment and pricing
decisions.
Another stream of operations management litera-

ture, including papers by Federgruen and Heching
(1999), Chen and Simchi-Levi (2004a, b), Polatoglu
and Sahin (2000), Chen et al. (2006), and Song et al.
(2009), considers the coordination of pricing and
inventory control (replenishment) with independent
demand. Additionally, our paper is related to work on
joint production-pricing problems; see review papers
by Eliashberg and Steinberg (1993), Elmaghraby and
Keskinocak (2003), and Chan et al. (2004). In almost
all of these models, however, the demand in each
period is assumed to be independent of price history.
In contrast, we explicitly model the relationship

between current demand and price history. In this
respect, our model is most closely related to two
papers: Cheng and Sethi (1999) and Ahn et al.
(2007). Cheng and Sethi consider a stochastic inven-
tory model with Markov-modulated demand, where
demand in each period is influenced by a state vari-
able, which may in turn be influenced by the pro-
motion decision in previous periods. However, in our
model, the demand distribution is a function of the
state variable and the price in the current period
and in previous periods. This distinction allows us
to capture the timing effect discussed above. Ahn
et al. (2007) consider a deterministic capacitated pric-
ing and production model in the presence of intertem-
poral demand interaction, and focus on determining
the sequence of optimal prices in various scenarios.
In this paper, we focus on the timing of sales and the
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inventory policy in an environment where demand is
stochastic, and is impacted by whether or not a sale
is offered in the current period, and by the time since
the last sale was offered.

2. Model Formulation
We consider a discrete-time, T -period finite-horizon,
single-item stochastic demand model where at each
period the retailer offers one of two possible prices,
a (regular) retail price or a (discounted) sale price,
both of which are exogenously determined. Let pr

and ps (pr > ps) be the retail price and the sale price,
respectively. At the start of each period (t = 1� � � � � T ),
the retailer makes inventory ordering (i.e., how much
to order) and pricing (retail or sale) decisions after
observing the starting inventory level and the num-
ber of periods since the last sale. Once decisions are
made, demand is realized and holding or penalty cost
is incurred.
Specifically, let xt be the starting inventory level at

the beginning of period t prior to inventory replen-
ishment, kt be the number of periods since the last
sale before period t (where kt = 1 if there was a sale
in period t − 1), yt be the inventory level in period t

after inventory replenishment (we assume zero lead
time) but before demand realization, and pt ∈ �pr� ps�

be the price charged in period t. Our objective is to
determine the optimal pricing and inventory policy
that maximizes the expected (discounted) profit for a
finite-horizon problem. We assume no fixed ordering
cost and no maximum ordering capacity. For most of
the paper, we assume lost sales, but we extend the
results to the backorder case in the final section of the
paper.
The explicit representation of intertemporal de-

mand in a stochastic setting is fundamental to our
model. As in Pesendorfer (2002), we conceptually
divide potential customers into two groups: high-
valuation consumers who will purchase independent
of whether or not the product is on sale (that is, at the
retail price or at the sale price), and low-valuation
consumers who will purchase only at the sale price.
In each period, customers from both groups enter
the system (that is, their need for the good arises).
When the retailer charges the retail price, only high-
valuation consumers will attempt to buy, but some
of the low-valuation consumers from the current and

previous periods will remain in the system, waiting to
see if the sale price is charged in subsequent periods.
On the other hand, when the retailer charges the sale
price in period t, all of the customers who entered
the market in period t (both high- and low-valued),
as well as remaining low-valuation customers from
previous periods, will buy the product (at the sale
price). This conceptual demand formation process can
be viewed as a stochastic extension of the model con-
sidered in Ahn et al. (2007), with price restricted to
two possible levels.
Recall that we are interested in a stochastic demand

setting that is consistent with the empirical findings of
Pesendorfer (2002). Thus, our demand model needs to
reflect the fact that demand at the sale price is likely
to be higher than demand at the retail price, and the
fact that demand at the sale price is likely to be higher
when more periods have passed since the last sale
than when fewer periods have passed. To do this, we
assume that the demand distribution in each period t,
t = 1� � � � � T , is determined by two factors: the price
charged in period t, pt , and the number of periods
since the last sale, kt .
To formally capture this, let �t�pt� kt� be a nonneg-

ative and continuous random variable that represents
the demand in period t when the retail price is pt and
the number of periods since the last sales is kt , and let
	t�� � pt� kt� and 
t�� � pt� kt� be its cumulative distri-
bution function (c.d.f.) and probability density func-
tion (p.d.f.), respectively. Given pt and kt , �t�pt� kt� is
defined as follows:

�t�pt� kt� ∼

⎧⎪⎨
⎪⎩

�r� if pt = pr�

�s
k� if pt = ps and kt = k�

(1)

Observe that when the retail price is charged, demand
at the retail price, �r , is independent of the past
price trajectory and identically distributed with c.d.f.
	r���, p.d.f. 
r���, and mean �r = E�r �. On the other
hand, when the sale price is charged after k, its resul-
tant demand (�s

k) is dependent on the time since the
last sale and follows a distribution 	s

k��� with den-
sity 
s

k��� and mean �s
k = E�s

k�. This demand model
enables us to capture Pesendorfer’s notion of high-
valuation customers who arrive at the system and
buy immediately, regardless of the price and low-
valuation customers who may accumulate until the
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sale. To do this, we introduce the notion of stochas-
tic order as follows: We say random variable X

is stochastically smaller than random variable Y if
P�X ≤ u� ≥ P�Y ≤ u� for all real u, and denote this by
X ≤ST Y . Then, the following assumption captures the
aforementioned consumer behavior:

Assumption 1. �r ≤ST �s
1 and �s

k is stochastically
increasing in k.

This assumption implies that in a stochastic sense,
demand at the sale price is larger than demand at
the retail price, and that demand at the sale price
increases in time since the last sale.
It is also reasonable to assume that the marginal

increase in demand at sale price is decreasing in time
since the last sale in most practical settings, because
one would not expect all low-valuation customers to
wait indefinitely for a sale (and indeed, Pesendorfer
made a similar observation in his empirical study).
However, most of our results do not require this
assumption—we formally introduce it when needed.
Also, we note that one could propose an alterna-
tive model of intertemporal interaction in which the
demand at the retail price is also affected by the fre-
quency of sales. We do not do so, in order to keep the
model tractable for the development of results and
insights.
For our stochastic dynamic program, we use the

inventory level at the start of period t and number of
periods since the last sale, i.e., �xt� kt�, t = 1� � � � � T , as
our state variables. In each period, the decision maker
simultaneously sets price pt to either the retail price pr

or the sale price ps and raises the inventory level to yt

by ordering and receiving yt − xt units of inventory
before demand realization. Then, the inventory level
and the number of periods since the last sale at the
start of period t + 1 are as follows:

xt+1 =maxyt − �t�pt� kt��0� = yt − �t�pt� kt��
+�

t = 1� � � � � T

and

kt+1 =

⎧⎪⎨
⎪⎩

kt + 1� if pt = pr�

1� if pt = ps�

We define u�+ = maxu�0� and u�− = max−u�0�
for any real number u, and observe that for a given

state �xt� kt� and retailer action �yt� pt�, the retailer
realizes the following revenue and costs:
• pt minyt� �t�pt� kt�� is the revenue in period t.
• c�yt − xt� is the cost of raising inventory from xt

to yt in period t, where c is the unit ordering cost.
• h�yt − �t�pt� kt�� = h+yt − �t�pt� kt��

+ + h−yt −
�t�pt� kt��

− is the inventory and penalty cost at the end
of period t, where h+ is the per-unit holding cost and
h− is the per-unit penalty cost incurred upon stockout.
Because we are already capturing the loss of revenue
in our revenue term, h− represents the additional loss
of goodwill cost or any other lost-sales related cost
not directly related to the current revenue. (When we
consider the backorder case, the same cost function
applies except that h− represents the per-unit backo-
rder cost.)
Let Vt�xt� kt�, t = 1� � � � � T , be the expected dis-

counted profit-to-go function under the optimal pol-
icy starting from any admissible state �xt� kt�, and let
Jt�yt� pt� xt� kt� be the expected profit-to-go function if
the retailer offers price pt and raises the inventory
level to yt from state �xt� kt� in period t, and follows
the optimal policy in subsequent periods. Then, the
retailer’s problem can be expressed as a stochastic
dynamic program satisfying the following recursive
relation:

Vt�xt� kt� = max
pt∈�pr � ps�

{
max
yt≥xt

Jt�yt� pt� xt� kt�
}

and

Jt�yt� pt� xt� kt�

= −c�yt − xt� +
∫ �

0
pt minyt� �� − h+yt − ��+

−h−yt −��−+�Vt+1�yt −��+�kt+1��
t�� �pt�kt�d�

where �, 0 < � < 1, is the discount factor. Let
VT +1�xT +1� kT +1� = cxT +1 be the terminal value func-
tion that represents the salvage value of the inventory
at the end of the planning horizon. This is a standard
assumption in many inventory models (c.f., Porteus
2002), and will facilitate our analysis.
Following a standard approach in the stochas-

tic inventory literature, we find it useful to work
with transformed versions of our value functions.
We let Ĵt�y� p�k� = Jt�y� p�x�k� − cx and �Vt�x�k� =
Vt�x�k� − cx. Then,

�Vt�x�k� = max
p∈�pr � ps�

{
max
y≥x

Ĵt�y� p�k�
}

(2)
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where Ĵt�y� p�k� satisfies

Ĵt�y� p�k� =
∫ �

0
pmin�y��� − cy + �cy − ��+

− h+y − ��+ − h−y − ��−

+ � �Vt+1�y − ��+� kt+1��
t�� � p�k�d��

In this transformed formulation, Ĵt�y� p�k� does not
depend on x and the terminal condition becomes
�VT +1�·� = 0. Note that with two decision variables
(price and inventory level) and two state variables,
the optimal policy can be quite complex and may
depend on the state variables and time-to-go. In the
next section, we analyze the form of these optimal
decisions and characterize the structural relationships
between the optimal inventory ordering/pricing deci-
sions and the state variables. In §4, we explore a deter-
ministic dynamic program that corresponds to the
make-to-order case of our model. In §5, we use the
insight from this exploration to develop an effective
heuristic for our model and present the results of our
computational study, and in §6, we present several
extensions of our model and conclude.

3. Optimal Policy
The typical strategy employed to characterize the
structure of the optimal policy in a periodic-review
inventory model includes a proof that the value func-
tion is concave or quasi-concave (convex or quasi-
convex under minimization) in inventory order-up-to
level, a proof that this concavity (or quasi-concavity)
is preserved under the dynamic programming oper-
ator, and an induction-based argument to show the
desired structural result (see, e.g., Porteus 2002). If the
value function in our model were concave, one could
use the fact that concavity is preserved under expecta-
tion operator without any distributional assumption.
Unfortunately, with joint maximization over price
and inventory decisions, even the single-period profit
function for our model is not concave (although it is
quasi-concave) in order-up-to level, and proving that
the expected profit-to-go function is quasi-concave
(unimodal) for multiple periods is not trivial, because
one needs to show that the property is preserved
over induction and joint maximization over price and
inventory decisions.

Thus, we are motivated to use a different ap-
proach—we restrict demand at retail and sale prices
to distributions with strongly unimodal densities, the
class of strongly unimodal distributions. Ibragimov
(1956) introduced the class of strongly unimodal distri-
butions and defined it as follows:
Definition 1. A distribution of a random variable

is said to be strongly unimodal if its convolution with
any unimodal function is unimodal.
In fact, characterization of strongly unimodal dis-

tribution is convenient for a continuous random vari-
able because the distribution is strongly unimodal
if it has a log-concave density (Dharmadhikari and
Joag-Dev 1988 and Fox et al. 2006). We use the fact
that the unimodality is closed under integral con-
volution for strongly unimodal distributions to char-
acterize the structure of the optimal inventory pol-
icy in our model by making the following technical
assumption.

Assumption 2. The distribution of demand at the retail
price and the distributions of demand at the sale price
(i.e., the distributions of �r and �s

k, k = 1�2� � � �) are
strongly unimodal.

Although this assumption may sound technical
and restrictive, a number of important distributions
are indeed strongly unimodal, including, among oth-
ers, normal, truncated normal, uniform, exponential,
gamma with shape parameter � ≥ 1, and beta with
p ≥ 1 and q ≥ 1 (Dharmadhikari and Joag-Dev 1988).
For additional reference, results, and applications of
strongly unimodal distribution, see Fox et al. (2006)
and Dharmadhikari and Joag-Dev (1988).
With this assumption, we now show that the opti-

mal inventory level for a given price is determined by
a state-dependent base-stock policy:

Theorem 1. Suppose that Assumptions 1 and 2 hold.
In each time period t, for each p and k, there exists an opti-
mal base-stock level st�p� k� such that if the starting inven-
tory level xt < st�p� k�, it is optimal to raise the inventory
level to st�p� k�, and otherwise it is optimal to do nothing.

Proof. The proof is in the online appendix. �

Theorem 1 characterizes the optimal order quantity
for a given price when the starting inventory level is
x and k periods have passed since the last sale. Note
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that st�p� k� is the optimal base-stock level in period t
when the offered price is p and the number of periods
since the last sale is k, and is given by

st�p� k� = argmax
y≥0

Ĵt�y� p �k��

In any period and state, the difference between the
regular retail price base-stock level and the sale price
base-stock level is driven by two factors: the differ-
ence between the retail and sale prices, and the num-
ber of periods since the last sale. The sale demand
increases in the number of periods since the last
sale, k, and all things being equal, this increases the
sale price base-stock level as k increases. On the other
hand, as the sale price decreases relative to the reg-
ular retail price, the sale price base-stock level tends
to go down. Depending on which force is more sig-
nificant, the sale price base-stock level can in general
be larger or smaller than the regular retail price base-
stock level.
However, to facilitate subsequent analysis, we make

the following technical assumption that demand at
the sale price (even when k = 1) is sufficiently high
that the single-period order-up-to level at the sale
price is higher than that at the retail price:

Assumption 3. The order-up-to level of a single-period
newsvendor problem with the retail and sale price demand
distributions of our model is decreasing in price. That is,

	
s�−1�
1

(
ps +h−−c

ps +h++h−−�c

)
≥	r�−1�

(
pr +h−−c

pr +h++h−−�c

)
�

Indeed, for many realistic scenarios, it is rea-
sonable to think that demand at the sale price
will be considerably higher than demand at the
retail price, which suggests that this assumption
likely holds. In fact, Pesendorfer’s (2002) ketchup
demand was on average seven times higher during
sales.
Assumption 3, along with Assumptions 1 and 2,

enables us to further characterize the structure of the
optimal policy.

Theorem 2. Under Assumptions 1–3:
(i) When the retail price is offered, the base-stock level

is independent of the number of periods since the last
sale and the number of remaining periods in the planning
horizon. That is, there exists a constant sr > 0 such that
st�p

r� k� = sr for all t and k.

(ii) The base-stock level under the sale price is always
larger than the base-stock level under the retail price:
st�p

s� k� ≥ sr for all k and t.
(iii) For a given k ≥ 1, �Vt�x�k� is constant in x ∈ 0� sr �

for all t.

Proof. The proof is in the online appendix. �

Utilizing Theorems 1 and 2, we can begin to char-
acterize the optimal pricing and inventory policy. For
this purpose, in addition to the base-stock level under
the retail price, sr , and sale base-stock levels, st�p

s� k�,
we introduce a third critical level s̃t�k� that represents
the starting inventory level below which it is optimal
to charge the retail price.
By Theorem 2.(iii), s̃t�k� must belong to one of

the following three cases: (i) s̃t�k� = 0, (ii) s̃t�k� ∈
�sr � st�p

s� k��, or (iii) s̃t�k� ≥ st�p
s� k�. The structure

of the optimal joint pricing and inventory policy
depends on s̃t�k�.

Theorem 3. Suppose Assumptions 1–3 hold. If there
have been k periods since the last sale, the optimal price
and inventory policy in period t takes one of the following
three forms depending on the initial inventory level and
the values of s̃t�k�, sr , and st�p

s� k�:
Case (i) s̃t�k� = 0: If x ≤ st�p

s� k�, it is optimal to order
up to st�p

s� k� and offer the sale price ps . Otherwise, it is
optimal to not order and to charge a state-dependent price,
p∗

t �x� k� = argmaxp∈�pr � ps� Ĵt�x� p�k� (see Figure 1).
Case (ii) sr < s̃t�k� < st�p

s� k�: If x ∈ 0� sr �, it is opti-
mal to order up to sr and to sell at the retail price pr . If x ∈
sr � s̃t�k��, it is optimal not to order, and to sell at the retail
price pr . If x ∈ s̃t�k�� st�p

s� k��, it is optimal to order up
to st�p

s� k� and to sell at the sale price ps . If x > st�p
s� k�,

it is optimal to not order, and to follow a state-dependent
pricing policy, p∗

t �x� k� = argmaxp∈�pr � ps� Ĵt�x� p�k� (see
Figure 2).
Case (iii) s̃t�k� ≥ st�p

s� k�: If x ≤ sr , it is optimal to order
up to sr and sell at the retail price pr . If x ∈ �sr � s̃t�k��,

Figure 1 Optimal Inventory and Pricing Policy for Case (i) s̃t �k� = 0

Ordering policy

Pricing policy
ps ps pt*(xt, kt)

s̃t(kt) = 0

s̃t(kt) = 0

st(ps, kt)

st(ps, kt)
xt

xt

sr

sr
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Figure 2 Optimal Inventory and Pricing Policy for Case (ii)
s̃t �k� ∈ �sr � st �p

s� k��

0

0

Ordering policy

Pricing policy
pr pr ps pt*(xt, kt)

s̃t(kt)

s̃t(kt) st(ps, kt)

st(ps, kt)
xt

xt

sr

sr

it is optimal to not order and to sell at the retail price pr .
If xt ≥ s̃t�k�, it is optimal to not order and to follow a state-
dependent price p∗

t �x� k� = argmaxp∈�pr � ps� Ĵt�x� p�k� (see
Figure 3).

Proof. The proof is in the online appendix. �

In general, when the starting inventory level is
higher than the maximum of the appropriate base-
stock levels (sr and st�p

s� k�) and the threshold s̃t�k�,
the optimal pricing policy is state dependent. There-
fore, the optimal price can switch between sale and
retail in this region. In this region the optimal pricing
policy can be quite complicated with respect to both
state variables.
As an example, consider the relationship between

the optimal pricing decision and the number of peri-
ods since the last sale, that is, the sensitivity of p∗

t �x� k�

to k for a fixed x. One might expect that if it is optimal
to offer the sale price for a given starting inventory
when the last sale was k periods ago, it would still be
optimal to offer a sale if the last sale was k + 1 peri-
ods ago because the demand at the sale price when
the last sale was k + 1 periods ago is stochastically
larger than the demand at the sale price when the last
sale was k periods ago. However, as the next exam-
ple shows, the optimal price is not necessarily mono-
tone in k.

Figure 3 Optimal Inventory and Pricing Policy for Case (iii)
s̃t �k� ∈ �st �p

s� k����

0

0

Ordering policy

Pricing policy
pr pr pr pt*(xt, kt)

s̃t(kt)

s̃t(kt)

xt

xt

sr

sr

st(ps, kt)

st(ps, kt)

We consider a two-period example satisfying
Assumptions 1–3, where retail and sale demands are
drawn from uniform distributions:
Example 1.

�t�p� k� =

⎧⎪⎨
⎪⎩

U��r�vr �� if p = pr�

U��k�vk�� if p = ps�

where U���v� is a uniform random variable that has
a support from � − v to � + v. Let �r = 6, vr = 3,

�k = 9
∑k

i=1 �i−1, and vk = vr

√∑k
i=1 �2�i−1� with � = 0�90.

Finally, pr = 30, ps = 15, h+ = 5, h− = 0, c = 10, � = 1,
and the planning horizon is T = 2 periods.
In Figure 4 we present the optimal first-period pric-

ing policy for Example 1 as a function of initial inven-
tory level for k = 2�3, and 4. Observe that in the
highlighted range, there are a range of initial inven-
tory levels for which it is optimal to offer a sale when
k1 = 2, but not when k1 = 3 or 4. For a given ini-
tial inventory level, the optimal price does not nec-
essarily decrease in k. This counterintuitive behavior
is a result of two opposing effects. On one hand,
as k increases from 2, the demand in the second
period if the sales price is not offered in the first
period will increase, making delaying the sale more
appealing. On the other hand, delaying the sale (for
a given inventory level) will increase the holding cost
in the first period if the starting inventory in the first
period is sufficiently large. For this example, when
the starting inventory is around 17, the increase in
demand if k is allowed to grow to 4 in the second
period from 3 in the first period (or from 4 to 5) dom-
inates the extra holding cost, and therefore the retail
price is optimal when k = 3 or 4. On the other hand,

Figure 4 Optimal Policy Is Nonmonotonic in k in the Highlighted
Region
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the increase in demand if k is allowed to grow to 3 in
the second period from 2 in the first period does not
fully compensate for the extra holding cost, so offer-
ing a sale is optimal.
Similarly, one might expect that p∗

t �x� k� would
decrease in starting inventory x because higher start-
ing inventory levels lead to higher inventory holding
costs, suggesting that inventory should be liquidated
through a sale. However, we can create similar exam-
ples in which increasing inventory increases the value
of waiting an additional period for higher demand
under the sale price, and hence the price is nonmono-
tonic in starting inventory level. For instance, for cer-
tain examples we observe that the sale price is offered
at moderate inventory levels while the retail price is
offered at higher inventory levels. In these cases, mod-
erate initial inventory implies that most of this inven-
tory can be liquidated by offering a sale, so offering
a sale becomes optimal. On the other hand, relatively
high initial inventory implies that offering a sale is
likely to liquidate only a portion of the existing inven-
tory, so it may be optimal in this case to offer the
retail price and delay the sale in order to increase sale
demand level in subsequent periods.
We note that Assumption 3 plays a crucial role in

the characterization of the policy in Theorems 2 and 3.
If Assumption 3 does not hold, parts (ii) and (iii) of
Theorem 2 do not hold, and, in turn, in Theorem 3
the same approach cannot be used to characterize
the structure of the optimal policy when the starting
inventory is between 0 and sr .
We conjecture that a version of Theorem 3 could be

extended to the infinite-horizon problem under some
technical conditions. However, because we are only
able to partially characterize the structure of value
function as a function of initial inventory and the
number of periods since the last sale, classical results
(such as Iglehart 1963) do not directly apply. Although
one might be able to use an approach similar to that
of Chen and Simchi-Levi (2004b) and Feinberg and
Lewis (2007), this would not be trivial and merits fur-
ther research.

4. Make-to-Order System
As we demonstrated in the previous section, the opti-
mal policy of our model is sometimes quite compli-
cated, because pricing and inventory decisions are

influenced by intertemporal demand effects, the start-
ing inventory level, and the time remaining in the
planning horizon. In general, the optimal pricing pol-
icy may not be monotone either in starting inven-
tory level or in the time since the last sale. To isolate
the intertemporal demand effect on the pricing deci-
sion free of inventory considerations, we next con-
sider a simplified version of the model, in which we
assume that the retailer places an order after observ-
ing the demand realization—a “make-to-order” sys-
tem. An immediate consequence of this restriction
in our model is that we never pay inventory-related
costs, and we satisfy all realizations of demand. Thus,
the decision problem in each period can be recast as
a deterministic dynamic program by replacing the ran-
dom variable representing demand with its mean.
Observe that the only state variable in this make-

to-order model is the time since the last discount was
offered, k. The dynamic program is as follows:

Vt�kt� = max
pt∈�pr � ps�

��pt� kt� + �Vt+1�kt+1��

where ��pr� kt� = E�pr − c��r � = �pr − c��r and
��ps� k� = E�ps − c��s

k� = �ps − c��s
k are the expected

one-profit profits at the retail price and the sale
price, respectively; � ≤ 1 is the discount factor; and
VT +1�k� = 0 for all k. Noting that the demand at the
retail price is independent of the number of periods
since last sale, we omit k in ��pr� k� and write it
as ��pr�.
We assume that the expected demand under the

sale price, E��ps� k�� = �s
k, is strictly concave and

increasing in k, that is, �s
k+1 − �s

k > �s
k+2 − �s

k+1 ≥ 0,
so that the marginal increase of the expected demand
at the sale price decreases as k increases. Under
this assumption, we show that a threshold policy is
indeed optimal:

Theorem 4. Let p∗
t �k� be the optimal price at period t

when k periods have passed since the last sale. Then,
(i) p∗

t �k� is nonincreasing in k. In other words, there
exists a k∗

t such that it is optimal to charge the retail price,
pr , if k ≤ k∗

t , and to offer the sale price ps otherwise.
(ii) Vt�k + 1� − Vt�k� ≤ ��ps� k + 1� − ��ps� k� for all

k = 1� � � � � t and t = 1� � � � � T .

Proof. We prove this result by induction in the
online appendix. �
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For finite-horizon problems, finding the optimal
pricing policy is quite straightforward because one
simply needs to solve the corresponding shortest-
path problem. Indeed, this motivates us to explore
the effectiveness of this type of threshold policy as
a heuristic for our original make-to-stock model. We
investigate this in the computational section of the
paper.
The threshold levels suggested by Theorem 4 are

in general time dependent, so that there exists k∗
t for

each period t such that if the number of periods since
the last sale is less than k∗

t , it is optimal to offer the
retail price and otherwise it is optimal to offer the
sale price. To better understand the nature of these
threshold levels, we next consider the infinite-horizon
version of this problem in both the discounted and
average profit cases.
For both cases, in §E of the online appendix, we

prove that a time-invariant optimal threshold level k∗

exists for each period t. In other words,

Lemma 1. There exists an optimal stationary policy for
both discounted and average profit cases.

Thus, there exists an optimal policy where the sale
price is offered every k∗ periods (i.e., a cyclic dis-
count policy). In order to characterize the optimal
cycle length, we write the expected profit associated
with a policy in which the sale price is offered every k

periods and find the optimal cycle length. Let ���k�

and �A�k� be the discounted and average expected
profit of a k-period cyclic policy with initial state
k0 = 1, respectively. After some algebraic manipula-
tion, we get, for all k ≥ 1,

���k� = ��pr�

1− �
+ �k−1 ��ps� k� − ��pr�

1− �k

(Discounted profit)�

and

�A�k� = ��pr� + ��ps� k� − ��pr�

k
(Average profit).

The derivations of both expressions above are found
in §F of the online appendix. Observe that a peri-
odic sale dominates selling at the retail price in
every period if and only if there exists a k such that
��ps� k� − ��pr� ≥ 0. In such a case, the optimal cycle

length is the one that maximizes the difference in
profits:

k�∗ = argmax
�k−1���ps� k� − ��pr��

1− �k

(Discounted profit)�

and

kA∗ = argmax
��ps� k� − ��pr�

k
(Average profit).

Furthermore, because ��ps� k� is increasing in k, it
suffices to consider k ≥ k = min�k � ��ps� k� − ��pr� ≥
0�. The following two lemmas are useful for charac-
terizing the optimal cycle length.

Lemma 2. In the infinite-horizon discounted profit
problem, for k ≥ k,
(i) The k-period cyclic policy is better than the k + 1-

period cyclic policy if and only if

��ps� k + 1� − ��ps� k�

��ps� k� − ��pr�
≤ 1/�∑k

i=1 �i−1

= 1− �

�

1
1− �k

� (3)

(ii) ���k� is unimodal in k.

Lemma 3. In the infinite-horizon average profit prob-
lem, for k ≥ k,
(i) The k-period cyclic policy is better than a k+1-period

cyclic policy if and only if

��ps� k + 1� − ��ps� k�

��ps� k� − ��pr�
≤ 1

k
� (4)

(ii) �A�k� is unimodal in k.

The proofs of these lemmas are in §G of the online
appendix. Conditions (3) and (4) imply that if the
marginal benefit of extending the cycle by one period
becomes sufficiently small, then it is optimal to not
extend the length of a cycle. In fact, both condi-
tions describe precisely the minimum marginal gain
required to optimally extend the cycle length by
at least one period. Solving for the optimal cycle
length is not hard because in both cases, the profit
function is unimodal in k.
We employ Lemmas 2 and 3 to characterize the opti-

mal pricing policy for the infinite-horizon problem.
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Theorem 5. In the infinite-horizon discounted profit
problem,
(i) It is optimal to sell at the retail price in every period

if and only if ��pr� ≥ ��ps� k� for all k ≥ 1.
(ii) Otherwise, it is optimal to use the k∗-period cyclic

pricing policy where k∗ is the smallest integer greater than
k satisfying condition (3).
The results hold for the average profit case with condition

(4) replacing condition (3).

Proof. The proof is in §G of the online
appendix. �

We note that this result is similar in spirit to
the results established in other papers examining
intertemporal demand effects for both durable and
nondurable goods, including the papers of Conlisk
et al. (1984), Sobel (1991), Pesendorfer (2002), and Ahn
et al. (2007). Although the settings and model details
are different in each of these papers, they all conclude
that some form of periodic sale is optimal for captur-
ing the demand of low-valuation customers.

5. Computational Study
We use a computational study to develop managerial
insights into the benefit of jointly making pricing and
inventory decisions (either optimally or heuristically)
in the presence of intertemporal demand interactions,
as well as to explore the impact of various sys-
tem characteristics on effective pricing and inventory-
ordering policies. Before discussing our results, we
detail the problem parameters that we use in our
experiments.

5.1. Problem Parameters
In our computational study, we hold the retail price,
sale price, unit cost, expected demand at the retail
price, and discount factor constant with the follow-
ing values: pr = 20, ps = 16, c = 12, �r = 10, � = 0�9.
We consider the lost-sales version of our model
(described in §2) with a 12-period planning horizon,
T = 12, and vary the remaining parameters as follows
in order to explore a variety of different settings sat-
isfying Assumptions 1–3:
Cost parameters. We use stationary linear produc-

tion cost and inventory holding cost functions
ct�x� = cx and ht�x� = h+x for all periods in the plan-
ning horizon. We do not consider shortage costs

explicitly because the effect of the lost sales is already
captured through the lost revenue. We vary the hold-
ing cost as a fraction of unit production cost, and use
h to denote this fraction; i.e., h = h+/c. In this compu-
tational study, we consider the following parameter
values for h: �0�05�0�10�0�15�0�20�.
Demand parameters. We model demand with trun-

cated normal random variables, where N +����� rep-
resents the positive part of normal random variable
with mean � and standard deviation � . We define the
demand in period t as follows:

�t�p� k� =

⎧⎪⎨
⎪⎩

N +��r� cv�
r�� if p = pr�

N +��s
k� cv�

s
k�� if p = ps�

where cv is the coefficient of variation (i.e., the propor-
tion of standard deviation to the mean (0 < cv < 1)),
and �r and �s

k are related as follows:

�s
k = �r1+ � + ��1− �k−1��

where 0 < � < 1, � > 0, and � > 0. Observe that for a
given coefficient of variation cv, the mean, and there-
fore the standard deviation and distribution of the
demand at the sale price, are completely character-
ized by the three parameters: �, �, and �. The mini-
mum increase of the mean demand at the sale price
from the mean demand at the retail price is repre-
sented by �, whereas the maximum increase of the
mean demand at the sale price (i.e., the mean demand
one could achieve by letting k approach infinity) is
equal to � + �. Thus, � corresponds to the differ-
ence between the maximum and the minimum mean
demands at the sale price. For example, if � = 1�5
and � = 2, then the mean demand at the sale price
is 1�5 times higher than the mean demand at the
retail price when k = 1, and although it increases as k

increases, it will be no more than 3.5 times higher.
Finally, � controls the marginal increase in the mean
demand at the sale price as the time since the last sale
increases, and captures the rate at which the demand
at the sale price accumulates. For example, if � = 0�50,
the marginal increase in the mean demand at the
sale price decreases by half if the sale is delayed an
additional period. The effect of these parameters on
the mean demand at the sale price is illustrated in
Figure 5.
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Figure 5 Expected Demand at the Sale Price as a Function of k
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In our experiments, we consider the following
parameter values:
• cv: �0�05�0�35�0�65�0�95�;
• �: �0�5�1�0�1�5�2�0�;
• �: �0�2�0�4�0�6�0�8�;
• �: �0�5�1�0�1�5�2�0�.
We compare the performance of the following three

strategies for 45 = 1�024 problem instances. For all
instances, we fix the initial state �x1� k1� to �0�1�:
no starting inventory and no accumulation of low-
valuation customers from previous periods.
To keep the computational experiment manage-

able, we vary several key parameters that are critical
to understanding intertemporal demand interactions
while keeping other parameter values fixed. Although
one could extend the numerical study to explore
changes in the optimal policy with respect to each
parameter, we elect to focus on how intertemporal
demand interaction (in particular, the demand distri-
bution at the sale price) impacts inventory and pricing
policy.

5.1.1. Optimal Policy. We solve the correspond-
ing dynamic program, find the optimal policy, and
calculate the expected profit under the optimal policy.
Recall that the optimal policy consists of both inven-
tory and pricing decisions, i.e., �y∗

t �x� k�� p∗
t �x� k��.

We define �∗ to be the optimal expected profit with
the initial state, �x1� k1� = �0�1�:

�∗ = V1�0�1��

5.1.2. Heuristic Policy. Recall that the optimal
pricing policy for the make-to-stock model can be
quite complicated. Thus, we are motivated to consider
a simple threshold policy building on our make-to-
order model results. In particular, we solve for the
pricing decisions as if our model were make-to-order,
and then use a myopic newsvendor solution for the
ordering quantity.

Heuristic Policy.

1. Let k∗
t be the threshold level found by solving the

deterministic dynamic programming problem as if our
instance were a make-to-order problem.
2. Define

sr = �	r�−1�f r � and s�ps� k� = �	s
k�

−1�f s��

where f r and f s are the critical-fractiles of single-period
problem for the retail and sale prices, respectively:

fr = pr + h− − c

pr + h+ + h− − �c
and fs = ps + h− − c

ps + h+ + h− − �c
�

3. If k < k∗
t , then offer the retail price, pr , and raise the

inventory level to sr .
4. If k ≥ k∗

t , then offer the sale price, ps , and raise the
inventory level to s�ps� k�.

Define V h
t �x� k� to be the expected profit-to-go

under the heuristic from period t with a starting state
�x� k�. We define �h to be the expected profit under
the heuristic for 12 periods with initial starting state,
�x1� k1� = �0�1�:

�h = V h
1 �0�1��

5.1.3. Constant Price Policy. Finally, we test a
constant price policy, in which the price is fixed to
be either the retail price, pr , or the sale price, ps ,
throughout the entire planning horizon, and inven-
tory is raised to the appropriate myopic base-stock
level described in the heuristic policy. We calculate
the expected profit under each price and pick the
one with the highest expected profit. Let �c be the
expected profit under the constant price policy with
initial starting state �x1� k1� = �0�1�.

5.2. Value of Effective Policies
In this section, we discuss our analysis of the effec-
tiveness of joint pricing and inventory management
in the presence of intertemporal demand interac-
tions. We start by defining two measures. First, we
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define Dh to be a measure of the relative benefit of
employing the optimal policy rather than the heuristic
policy described above:

Dh = 100× �∗ − �h

�∗ �

Recall that the heuristic policy corresponds to sequen-
tially making first the pricing decision (because in the
heuristic, the pricing decision is made based only on
the number of periods since the last sale decision)
and then the inventory-ordering decision. Therefore,
Dh represents relative increase in profit by simultane-
ously considering pricing and ordering decisions.
Similarly, we define Dc to be a measure of the rel-

ative benefit of employing the optimal policy rather
than a constant price policy:

Dc = 100× �∗ − �c

�∗ �

In other words, Dc measures the relative increase in
profit achieved by varying prices and inventory lev-
els to account for intertemporal demand interactions
as opposed to using a constant price and base-stock
level.
We calculate the value of both measures described

above (recall that these are expected values that we
calculate numerically) for each set of parameter set-
tings. In Table 1, we present the summary statistics of
this analysis.
In this table, we see that, on average, the heuris-

tic performs quite well (less than 1% from opti-
mal), whereas the constant price policy is 5% worse
than the optimal. In addition, the percentage opti-
mality gap of the constant price policy can be as
large as 27% for some instances. To explore the
impact of problem parameters on performance, in Fig-
ure 6, we graph values of Dh and Dc (the left bar

Table 1 Summary Statistics of Dc and Dh

Dc Dh

Mean 4
85 0
83
Standard deviation 5
79 1
29
Minimum 0
00 0
00
25th percentile 0
00 0
00
Median 2
80 0
02
75th percentile 8
00 1
35
Maximum 27
54 7
67

is Dc and the right bar is Dh) for several values of
a particular problem parameter, averaged over val-
ues of the other parameters. We make the following
observations:
• In general, the benefit of explicitly varying pric-

ing to account for intertemporal demand interac-
tions (i.e., Dc) increases as the variability of demand
decreases (i.e., cv decreases), the rate at which de-
mand at the sale price accumulates increases (i.e.,
� decreases), and the difference between the maxi-
mum and the minimum mean demands at the sale
price increases (i.e., � increases). In other words,
as the relative amount of demand that is impacted
by intertemporal interactions increases, the value of
changing prices to explicitly account for this interac-
tion also increases. This is quite intuitive.
• Dc, the benefit of explicitly varying pricing to

account for intertemporal demand interactions, is the
largest when � is around 1. To understand this, recall
that � represents the minimum increase in the mean
demand at the sale price (when k = 1). When �

is sufficiently large, offering a sale price itself sub-
stantially increases the mean demand independent
of the number of periods since the last sale. There-
fore, a pricing strategy that offers a sale every period
performs very well. When � is sufficiently small,
on the other hand, the time to accumulate enough
demand to justify the sale price could be very long,
so that the profit of the optimal policy may not
be very different from that of a policy that offers
the retail price every period. When � is in between
these extremes, periodic sales are intuitively most
valuable.
• The benefit of jointly rather than sequentially

optimizing price and inventory (i.e., Dh) increases as
holding cost and variability in demand increase. This
is because the optimal policy in some sense strikes
a balance between increased sales and increased
inventory-related costs, but these inventory-related
costs increase as holding cost or demand variability
increase.
To further explore the impact of problem param-

eters, in Table 2 we explore the change in the two
optimality gaps change with respect to specific �,
�, and cv values (averaging over other parameters)
and observe that the heuristic policy that sequentially
sets price followed by inventory level performs worse
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Figure 6 Dc and Dh for Different Values of Problem Parameters
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than the constant price policy (that is, Dc < Dh) in the
following cases:
• If demand is highly variable (cv is large) and

the difference between the maximum and minimum
demand at the sale price is small, the heuristic pol-
icy on the average performs worse than the con-
stant price policy. In this case, varying price and thus
order quantity will lead to fluctuations in demand
and inventory levels. Because the heuristic first sets
pricing policy without considering inventory effect, it
cannot account for inventory-related costs. As a result,
the increase in the inventory-related costs and lost
revenue, arising from fluctuations in inventory under
the heuristic policy, outweighs the benefit of using
periodic discounts. In other words, when demand is
highly variable, unless you can carefully coordinate
pricing and inventory, the benefit of varying price to
take advantage of intertemporal demand effects is,
at best, limited.
• When � decreases and � increases, the marginal

benefit of taking advantage of intertemporal demand

interactions in terms of increased sales also decreases.
Therefore, in this case also, the heuristic loses more by
ignoring the relationship between pricing and inven-
tory than it gains by manipulating prices.

5.3. Impact of Problem Parameters on
Optimal Policy

In this portion of our study, we explore the impact
of problem parameters on the optimal pricing and
inventory policy. To do this, we examine the optimal
inventory and pricing policy for the first period under
a variety of scenarios, and illustrate the changes in
the optimal policy as a function of starting inventory
level in Figures 7 and 8.
In column (A) of Figure 7, we vary the number

of periods since the last sale, k, while fixing other
parameters. Observe that as k increases, the small-
est inventory level at which it becomes optimal to
offer a sale (s̃t�k�, defined in §3) decreases and, at
the same time, the base-stock level at the sale price
(i.e., st�p

s� k�) increases. This is quite intuitive because
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Table 2 Mean Dc and Dh for Various Levels of cv , �, and 	

�

0.2 0.4 0.6 0.8

cv 	 Dc Dh Dc Dh Dc Dh Dc Dh

0.05 0
5 2
11 0.00 1
60 0.00 1.09 0.00 0.63 0.00
1 6
70 0.00 4
48 0.00 2.83 0.00 1.51 0.00
1
5 12
22 0.00 8
50 0.00 5.03 0.00 2.56 0.00
2 18
01 0.00 12
39 0.00 7.70 0.00 3.66 0.00

0.35 0
5 1
42 0.01 0
96 0.05 0.64 0.00 0.29 0.16
1 5
92 0.22 3
89 0.08 2.07 0.09 1.01 0.21
1
5 11
51 0.26 7
63 0.06 4.70 0.06 1.94 0.06
2 17
03 0.23 11
89 0.25 7.20 0.12 2.94 0.06

0.65 0
5 1
25 1.20 0
73 1.15 0.28 0.48 0.06 0.68
1 4
74 1.59 3
20 1.30 1.88 1.42 0.61 0.92
1
5 9
96 1.97 6
72 1.44 3.99 0.83 1.58 1.01
2 14
82 1.88 10
59 1.97 6.38 1.37 2.78 1.33

0.95 0
5 1
35 1.77 0
89 1.80 0.50 1.01 0.20 1.12
1 4
61 2.38 3
07 1.78 1.93 2.03 0.78 1.56
1
5 9
49 2.61 6
60 2.26 3.90 1.21 1.78 1.73
2 14
13 2.40 10
23 2.61 6.35 2.06 2.87 2.04

as k increases, the distribution of the demand at
the sale price stochastically increases, so offering a
sale becomes more appealing, and more inventory is
needed to meet the demand at the sale price. Like-
wise, increasing � (which represents the minimum
increase of the mean demand at the sale price from
the mean demand at the retail price) or increasing �

(which corresponds to the increase in the maximum
mean demand at the sale price) leads to the same
qualitative behavior, as can be seen in columns (B)
and (C) of Figure 7, respectively.
Column (A) of Figure 8 shows how the optimal pol-

icy changes in �, the rate at which the mean demand
at the sale price increases in k. Observe that for a
given k, the mean demand at the sale price increases
as � decreases. Hence, as � increases, s̃t�k� increases,
the base-stock level at the sale price (i.e., st�p

s� k�)
decreases, and the region of starting inventory for
which offering a sale is optimal decreases. Offering
a sale therefore becomes less appealing. In Column
(B) of Figure 8, we illustrate how the optimal pol-
icy changes when the coefficient of variation �cv�

of demand increases. Observe that as cv increases,
the standard deviation of demands at the retail and
sale prices also increase. As a consequence, order-
up-to levels increase and so do inventory-associated
costs (both holding cost and lost revenue). Once

cv becomes sufficiently large, these costs become
significant enough so that offering a sale becomes less
appealing and is only held to get rid of a high starting
inventory, rather than to explicitly take advantage of
intertemporal demand effects. In Column (C) of Fig-
ure 8, we observe that as the holding cost, h, increases,
sales are held at lower inventory levels, and the base-
stock levels at both the sale and retail prices are lower,
as expected.

6. Extensions, Conclusions, and
Future Research

6.1. Make-to-Stock Model with Backorder
In §3, we characterized the structure of the opti-
mal policy for the lost-sales case. In this section,
we extend the result to the case where unsatisfied
demand is backlogged. We assume that backlogged
buyers do not cancel and reorder even if the price
goes down—this assumption is consistent with the
models of Federgruen and Heching (1999) and Chen
and Simchi-Levi (2004a, b). Hence, the inventory level
x may be positive or negative. As in §2, h+ is the
per-unit holding cost, but h− now represents the per-
unit backorder cost. If the inventory level is raised to
yt from xt , and the price is set to pt ∈ �pr� ps� when the
state in period t is �xt� kt�, then the state in the next
period is described as follows:

xt+1 = yt − �t�pt� kt�� t = 1� � � � � T � and

kt+1 =

⎧⎪⎨
⎪⎩

kt + 1� if pt = pr�

1� if pt = ps�

We assume that demand is fulfilled on a first-come-
first-serve basis, so that no demand in the current
period will be satisfied without first clearing back-
orders. Just as in the lost-sales case, we subtract the
ordering cost cx in each period to transform the origi-
nal model into a more tractable form for determining
the optimal policy. As before, let �Vt�x�k� be the opti-
mal expected discounted revenue from period t and
onwards, and Ĵt�y� p�k� be the expected discounted
revenue of a policy that raises the inventory to y and
sets the retail price p in period t and follows the opti-
mal policy afterward. Then,

�Vt�x�k� = max
p∈�pr � ps�

{
max
y≥x

Ĵt�y� p�k�
}
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Figure 7 Optimal Policy in First Period �t = 1� as a Function of Initial Inventory to Illustrate Change in Optimal Policy in k, �, and 	, Respectively

0 10 20 30 40
0

40
[k = 1.0, γ = 0.5, Δ = 1.0] [k = 1.0, γ = 0.5, Δ = 1.0] [k = 2.0, γ = 0.5, Δ = 0.5]

[k = 2.0, γ = 0.5, Δ = 1.0] [k = 1.0, γ = 1.0, Δ = 1.0] [k = 2.0, γ = 0.5, Δ = 1.0]

[k = 3.0, γ = 0.5, Δ = 1.0] [k = 1.0, γ = 1.5, Δ = 1.0] [k = 2.0, γ = 0.5, Δ = 1.5]

0 10 20 30 40
0

40

0 10 20 30 40
0

40

0 10 20 30 40
0

40

0 10 20 30 40
0

40

0 10 20 30 40
0

40

0 10 20 30 40
0

40

0 10 20 30 40
0

40

0 10 20 30 40
0

40

Inventory Inventory Inventory

Inventory Inventory Inventory

Inventory Inventory Inventory

sr
sr

sr

sr sr sr

sr
sr sr

(A) Change in k (B) Change in γ (C) Change in Δ

Retail

Sale

Retail

Sale

Retail

Sale

Retail

Sale

Retail

Sale

Retail

Sale

Retail

Sale

RetailRetail

In
ve

nt
or

y 
af

te
r 

or
de

r

In
ve

nt
or

y 
af

te
r 

or
de

r

In
ve

nt
or

y 
af

te
r 

or
de

r

In
ve

nt
or

y 
af

te
r 

or
de

r

In
ve

nt
or

y 
af

te
r 

or
de

r

In
ve

nt
or

y 
af

te
r 

or
de

r

In
ve

nt
or

y 
af

te
r 

or
de

r

In
ve

nt
or

y 
af

te
r 

or
de

r

In
ve

nt
or

y 
af

te
r 

or
de

r

s1(ps, 2)

s1(ps, 2)

s1(ps, 2)

s1(ps, 1)

s1(ps,1)

s1(ps, 2)

s1(ps,3)

Note. We hold the remaining problem parameters fixed: cv = 0
35; h = 0
05; � = 0
4.

where Ĵt�y� p�k� satisfies

Ĵt�y� p�k�

=
∫ �

0
p� − cy + �c�y − �� − h+y − ��+ − h−y − ��−

+ � �Vt+1�y − ��kt+1��
t�� � p�k�d��

Rather than Assumption 3, for this backorder ver-
sion of our model we utilize the following technical
assumption:

Assumption 4. h− > �1− ��c.

Assumption 4 implies that satisfying the demand
in the current period is better than delaying one
period and satisfying it in the next period, and is
frequently called the nonspeculative assumption in the
inventory literature. Furthermore, the result is trivial
when Assumption 4 does not hold: It is optimal to
simply accrues all backorders until the end of horizon.

Utilizing Assumptions 1, 2, and 4, we can prove
results analogous to Theorems 1 and 2 for this back-
order case, and using these results, we are able to
characterize the optimal inventory and pricing policy
for the backorder case. As in the lost-sales case, s̃t�k�

represents the starting inventory level below which it
is optimal to charge the retail price. Replicating the
analysis for the backorder case, it can be shown that
s̃t�k� must belong to one of the following three cases:
(i′) s̃t�k� = −�, (ii′) s̃t�k� ∈ �sr � st�p

s� k��, or (iii′) s̃t�k� ≥
st�p

s� k�.

Theorem 6. Suppose Assumptions 1, 2, and 4 hold. If
there have been k periods since the last sale, the optimal
pricing and inventory policy in period t takes one of the
following three forms described in Theorem 3 with cases
(i′)–(iii′) replacing cases (i)–(iii) in Theorem 3.

The proof is similar to that of Theorem 3 and is
therefore omitted.



Ahn, Gümüş, and Kaminsky: Inventory, Discounts, and the Timing Effect
628 Manufacturing & Service Operations Management 11(4), pp. 613–629, © 2009 INFORMS

Figure 8 Optimal Policy in First Period �t = 1� as a Function of Initial Inventory to Illustrate Change in Optimal Policy in �, cv , and h, Respectively
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Note. We hold the remaining problem parameters fixed: k = 2� � = 0
5� 	 = 1
0.

6.2. Conclusion
In this paper, we introduce and analyze a model that
explicitly considers the timing effect of intertempo-
ral pricing—the concept, found in practice, that the
amount of demand during a sale is increasing in the
time since the last sale. We present structural results
that characterize the complex interaction between the
decision to have a sale and inventory ordering deci-
sions. Surprisingly, the sale decision is not necessarily
monotonic in time since the last sale, and the sale/no
sale decision is not necessarily monotonic in starting
inventory level.
In our computational analysis, we find that com-

pared to a fixed-price policy, we observe an aver-
age gain in profit of almost 5% from optimally
making promotion and inventory decisions account-
ing for intertemporal demand, and develop a sim-
ple heuristic that achieves 70% to 80% of this gain.
We find that this profit gain increases (to a max-
imum of about 25%) as the variability of demand

decreases, or the increase in demand resulting from
delaying sales increases. From a policy perspective,
we find that offering a sale becomes more appealing
as the “gap” between demand at the sale price and
demand at the regular price increases, but becomes
less appealing as demand variation or holding cost
increases. We believe that these insights contribute
to the understanding of the impact of intertemporal
demand effects on inventory and pricing and provide
a rationale for the offering of periodic discounts.
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