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1. Introduction
In recent years, as manufacturing and supply chains have
become more and more efficient, the conflict between pro-
duction planning and marketing has become more apparent.
For example, in recent discussions with the manager of a
bread production plant associated with a major supermarket
chain, the manager indicated to us that the most significant
factor leading to increased inventory levels and decreased
efficiency in his plant is the unpredictability of demand due
to promotional and pricing decisions made by the market-
ing group.
As a result, there is a growing research literature focus-

ing on joint marketing decision making and production
planning. Its objective is to develop approaches that avoid
conflicting marketing and operations planning decisions by
integrating marketing/pricing decisions and manufacturing
decisions to jointly achieve a common objective. A variety
of aspects of joint pricing and manufacturing models have
been analyzed in the operations management and marketing
literature. The models vary from constant demand, EOQ-
like frameworks, to nonstationary discrete and continuous-
time frameworks. Some models allow no replenishment
during a price planning horizon (appropriate for perish-
able or fashion goods), while others consider models which
allow production or inventory replenishment over time. The

models also differ in assumptions on demand and consumer
behavior.
A considerable body of work has been developed that

considers joint pricing and production models of perish-
able or seasonal goods—typically referred to as revenue
management—traditionally applied to the airline, hotel,
and car rental industries, and similar techniques (such
as mark-down pricing) have been adopted for perish-
able or seasonal products. Lazear (1986), Gallego and
van Ryzin (1994, 1997), Bitran and Mondschein (1997),
Subrahmanyan and Shoemaker (1996), Aviv and Pazgal
(2005), and Elmaghraby et al. (2006) consider revenue
management problems related to our models, and the area is
surveyed in review papers by McGill and van Ryzin (1999),
Petruzzi and Dada (1999), Bitran and Caldenty (2003), and
the textbook by Talluri and van Ryzin (2004). Federgruen
and Heching (1999) and Chen and Simchi-Levi (2004a, b)
consider period review stochastic production-pricing mod-
els, and Eliashberg and Steinberg (1993), Elmaghraby and
Keskinocak (2003), Yano and Gilbert (2004), and Chan
et al. (2004) provide comprehensive surveys of research
milestones and future opportunities for joint production-
pricing problems.
To the best of our knowledge, the earliest paper in which

price and production quantity are both decision variables
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is by Whitin (1955), who extends the basic EOQ model
to include a revenue term, and finds the optimal price
and lot size using a calculus-based approach. Kunreuther
and Richard (1971) propose the same model, and com-
pare decentralized decision making to centralized decision
making. Abad (1988) extends Whitin’s model to include
all-unit quantity discounts, and proposes an iterative algo-
rithm that is guaranteed to converge to the global optimal
price and lot size. He applies his model to linear and con-
stant price elastic demand curves and presents a numerical
study which compares the decentralized solution to the cen-
tralized one, similar to Kunreuther and Richard (1971). Due
to the nonconcavity of the profit term in EOQ-type analy-
sis, a global solution may require exhaustive enumeration
of local optima. Lee (1993) applies a geometric program-
ming framework to extend pricing the EOQ model to the
continuous quantity discount case, and obtains a globally
optimal solution to problems under the constant-price elas-
tic demand curve assumption. Kim and Lee (1998) consider
a pricing EOQ model where capacity can be expanded or
reduced at a cost.
There is also a set of papers that considers the joint pro-

duction and pricing problem as an optimal control prob-
lem. Among these, Stokey (1979) considers the problem
faced by a monopolist whose marginal cost of produc-
tion is decreasing over time. Pekelman (1974), Thompson
et al. (1984) and Feichtinger and Hartl (1985) analyze opti-
mal control problems that consider convex production cost
with linear and nonlinear demand functions and obtain var-
ious planning-horizon results. Cohen (1977) considers an
EOQ model with exponentially decaying inventory where
demand is a deterministic function of price. Rajan et al.
(1992) study the same model with dynamic pricing during
the planning horizon and Abad (1996) extends the results
obtained by Rajan et al. (1992) to the case in which partial
backlogging is allowed.
For the deterministic discrete-time production frame-

work, the trend has been to extend Wagner and Whitin’s
(1958) model to include price at each period as a decision
variable. Under the assumption that the demand in a given
period is independent of the prices offered in the adjacent
periods and that there is no capacity constraint, Thomas
(1970) develops an approach to calculate optimal price and
production schedule for each of the T periods and obtains
planning horizon results that extend the results of Wagner
and Whitin (1958). Kunreuther and Schrage (1973) and
Gilbert (1999) consider the special case of constant pric-
ing. Chan et al. (2000) analyze the capacitated discrete-time
problem without setup costs and extend the greedy resource
allocation algorithm of Federgruen and Groenevelt (1986)
to their model. Deng and Yano (2006) consider both capac-
ity and setup costs in their discrete-time problem and show
that introduction of prices into the capacitated lot-sizing
problem does not change the fundamental structure of the
optimal production decisions characterized by Florian and
Klein (1971). Charnsirisakskul et al. (2006) consider a joint

pricing and scheduling problem when the firm can predict
the demand as a function of price.
Virtually all this research considers demand at each

period to be a function of price in that period and indepen-
dent of price in other periods. In many cases, customers
may consider making a purchase for several periods, so that
demand in a period is a function of both price in that period
and prices in other periods. Our model explicitly consid-
ers these intertemporal demand-price interactions so that
realized demand in each period is dependent on realized
demands in previous periods as well as past and current
prices. Specifically, in each period a potential pool of cus-
tomers enters the market and these customers remain in the
system for more than one period. Some of the customers
entering the system in a given period who cannot afford the
product in that period have the patience to wait until the
price drops to a level they can afford. We first consider a
firm’s problem facing customers who purchase the product
during the first period in which the price falls below their
reservation price, then later extend the result to the case
with consumers who are aware of a future price pattern
during their tenure and buy at the period when their utility
is maximized.
Several papers are closely related to our research. In

papers by Sorger (1988), Kopalle et al. (1996), Fibich
et al. (2003), and Popescu and Wu (2007), authors con-
sider demand models in the dynamic pricing setting, where
past prices affect the current demand via reference price
formation mechanisms. Their goal is to identify the prop-
erties of the optimal pricing path under various assump-
tions on the functional form of reference price effects on
current demand. Bersanko and Winston (1990) consider
a markdown pricing mechanism of a monopolist facing
a fixed number of customers during a planning horizon.
They model a finite horizon problem where customers who
do not purchase in each period remain in the market and
they identify the properties of optimal markdown pricing
sequences when all customers are strategic or myopic. Our
paper is most closely related to Conlisk et al. (1984) and
Sobel (1991), which consider a durable good monopolist
in a market where a stationary cohort of new customers
arrives in each period and no customer leaves the market
before purchasing the good. After introducing our model
in the next section, we compare it to the models in these
papers.
In the next section, we introduce our model, in which

demand is allowed to remain in the system for more than
one period. We also introduce our results and algorithms.
Subsequent sections detail these results and the associated
proofs and describe our computational analysis.

2. Model and Main Results
We consider a deterministic discrete time T period finite
horizon capacitated production model. For each period,
decision variables pt and xt , t = 1�2� � � � � T , represent
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pricing and production decisions, respectively. Production
capacity, per unit production cost, and per unit holding cost
can vary from period to period, and are represented by Qt ,
ct , and ht , t = 1�2� � � � � T . Demand in each period is a
function of price, as we discuss in detail below.
Our model captures, in a relatively stylized and tractable

way, the impact of pricing decisions in one period on
demand in others. We are motivated by our own experience
when purchasing items like cars or computers, where we
have in the past first decided on a budget and then waited
for the price to fall within our budget. This concept does
not only apply to expensive goods, however. Some of the
authors of this paper wear Jockey brand undershirts, and
were also motivated by their experience purchasing this
product. Jockey has semiannual sales each year, in which
all prices are discounted 25%. One author, the big spender,
upon noticing that his undershirts could do with replacing,
heads to the local department store and stocks up. Another
author, the thrifty one, waits some period of time up to
six months and stocks up at 25% off. Readers also may
be familiar with the Barilla SpA (A) case, which describes
issues faced by the Barilla Pasta company, including Bar-
illa’s customers’ tendencies to increase purchase levels of
dry pasta during promotional periods and decrease purchase
levels at other times (see Hammond 1994).
To model this behavior, we divide demand in each

period t into current demand and residual demand. Current
demand is that demand generated by customers who enter
the system at that period (for example, the big spender
in the undershirt example). Residual demand is that por-
tion of demand resulting from customers who entered the
system in previous periods, but who have not yet made a
purchase (for example, the thrifty author in the period in
which Jockey underwear is on sale).
We model current demand in period t using a standard

linear price-demand curve:

Dt�pt�= do
t − stpt�

where d0t is the maximum demand, st is the price-demand
sensitivity, and

pt �
do

t

st

�

Figure 1. The price-demand curve (one period).
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In Figure 1, we illustrate this simple demand curve. Note
that for a particular price pt , there is a subset of customers
(represented by the shaded portion of the diagram) who
would have purchased if the price were lower (in other
words, if the price was at or below their reservation price),
and who are thus potentially part of the residual demand in
future periods.
Indeed, in Figure 2 we begin to illustrate the concept of

residual demand. The curve on the left represents the cur-
rent demand curve in period t, as in Figure 1. The curve
on the right represents the current demand curve in period
t + 1. Assume that we have set the price in period t + 1,
pt+1, to be lower than the price in period t, pt . The shaded
region on the left represents residual demand from period t
realized in period t + 1—these are customers who found
the price too high in period t, but low enough to make pur-
chases in period t+1. We define potential residual demand
from period t to mean demand arriving at period t that
can be realized in periods after t if prices are far enough
below pt .
Now, we consider a three-period example, and suppose

that prices are ordered so that pt+2 < pt < pt+1. We illus-
trate this example in Figure 3. In this example, no potential
residual demand from period t was realized in period t+1
because pt < pt+1. However, residual demands from peri-
ods t and t + 1 are realized in period t + 2 and illustrated
with shaded regions in Figure 3.
We further generalize this concept of current and residual

demand modeling with two parameters. Potential residual
demand from period t does not stay in the system forever;
we define parameter K to represent the number of periods
that potential demand remains in the system, so that K = 0
represents the model with no residual demand, and K is
at least 2 in Figure 3. Also, not all of the unmet poten-
tial demand in period t remains in the system for K time
units—we define �t

k, k = 0�1� � � � �K� to represent the pro-
portion of customers who will wait for at least k periods
when they join the system at period t such that 1= �t

0 �

�t
1 � �t

2 · · ·� �t
K � �t

K+1 = 0 for all t.
There are several limitations to this model. One rea-

sonable critique is that it assumes that consumers are not
aware of impending price decreases. Indeed, this model is
intended to represent situations in which customers place
a high value on a good’s availability, and tend to buy it as
soon as their budget constraints (i.e., reservation prices) are
met. In §7, we briefly consider the situation in which cus-
tomers are aware of pricing patterns, and in many cases the
actual situation may lie between these extremes. Another
reasonable critique is our use of linear demand curves;
however, this assumption helps us develop models that are
amenable to analysis, and helps generate insight which we
believe will apply in more complex situations. Also, we
note that although our model does not explicitly capture
the change in consumers’ price sensitivity due to markups
and markdowns in prior periods in the same way that typ-
ically price/promotion models in the marketing literature
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Figure 2. The price-demand curve (two periods).
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do, our model is consistent with these models in spirit.
Weak demand periods will follow a discount period, and
discounts generate revenue from consumers who will not
buy at the usual price levels.
Within our framework, we identify several useful prop-

erties of the optimal solution and develop algorithms to
find good (sometimes optimal) solutions for models with
capacity constraints. We believe that our model, while
clearly stylized, captures many of the important complexi-
ties that exist in real-world dynamic pricing and production
problems.
To formally define demand at period t, we first define rk

t

to represent the portion of demand in period t originating
from period t − k:

rk
t =




do
t − stpt if k = 0�

�t−k
k st−k

[
min

i∈�1�����k�
pt−i −pt

]+
if 1� k �K�

(2.1)

We introduce a minimization operator to select the min-
imum price between periods t − k and t − 1 because
this gives the leftover residual demand after observing the
actual prices from periods t−k to t−1. Hence, �t−k

k of this
leftover residual demand consists of the customers whose
reservation prices have not exceeded the product price from
period t − k to t − 1.
Next, we can write demand at period t in terms of rk

t s
as dt =

∑min�t�K�
k=0 rk

t . With this demand formulation, we
consider the following discrete-time multiperiod production
system where at each period we decide both price of the
product, pt , and the production quantity of the product, xt .

Figure 3. The price-demand curve (three periods).
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Model 2

max
pt� xt � It � dt � r

k
t

T∑
t=1

ptdt −
T∑

t=1
ctxt −

T∑
t=1

htIt (2a)

s.t. xt + It−1 = dt + It�

t = 1�2� � � � � T � to = 0� (2b)

xt �Qt� t = 1�2� � � � � T � (2c)

dt =
K∑

k=0
rk
t � t = 1�2� � � � � T � (2d)

0� pt � do
t /st� t = 1�2� � � � � T � (2e)

rk
t =




do
t − stpt if k = 0�

�t−k
k st−k

[
min

i∈�1�����k�
pt−i −pt

]+
if 1� k �min�K� t − 1��

(2f)

xt � 0� It � 0� t = 1�2� � � � � T � (2g)

Our objective is to maximize the net profit (2a) subject
to inventory balance (2b), production capacity (2c), and
demand realization constraints (2d)–(2f). In addition to the
parameters and constraints defined earlier, It , t = 1�2� � � �,
represents the inventory at the end of period t. To express
constraints (2f) as a set of linear constraints, we introduce
additional variables, mk

t to keep track of the minimum price
value observed between periods t− k and t− 1 and binary
variables, yk

t to indicate whether there is residual demand
from period t−k realized in period t (i.e., yk

t = 1 if rk
t > 0
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and zero otherwise). Using yk
t and mk

t , we rewrite con-
straints (2f) as follows:

0�mk
t � pu for u= t − k � � � t − 1� (3a)

0� rk
t � �t−k

k st−k�m
k
t −pt�+ �1− yk

t � ·do
t−k� (3b)

rk
t � yk

t ·do
t−k

for t = 2 � � � T � K = 1 � � �min�t − 1�K�� (3c)

r0t � 0� (3d)

r0t � d0t − stpt for t = 1 � � � T � (3e)

It is easy to see that the objective function of Model 2 is
neither convex nor concave in general. Note that residual
demand is materialized only when past and current prices
satisfy a set of conditions, so that the functional form of the
objective function changes depending on the relative order
of the pricing plan �p1� p2� � � � � pT �. To demonstrate the dif-
ficulty posed by this, consider an instance of a two-period
problem with identical demand for each period, �10 = �20 =
1, �11 = �, unlimited capacity, zero holding cost, and zero
production cost. This problem is written as:

maximize R�p1� p2�= p1d1�p1�+p2d2�p1� p2�

s.t. d1 = do − sp1�

d2 = �do − sp2�+ ��s p1−p2!
+��

0� p1 � do/s�

0� p2 � do/s�

Substituting expressions for d1 and d2 into the objective
function reveals that the objective function depends on the
relative magnitude of p1 and p2:

R�p1� p2�= p1�d
o − sp1�+p2�d

o − sp2�

+


0 if p1 � p2�

�s�p1−p2�p2 if p1 > p2�
(4)

In general, in Model 2 the revenue generated from resid-
ual demands depends not only on the current price, but also
on the relative order of prices offered for the last K peri-
ods, which makes the objective function nonconcave over
the feasible region of prices. Typically, such problems are
difficult to solve, and an efficient algorithm that finds a
global optimal solution does not exist. Below, we char-
acterize the structure of the optimal solution to Model 2.
Now, consider Model 2 with the addition of a series of
constraints that enforce an ordering of prices. For exam-
ple, if T = 3, these constraints may require p3 � p1 � p2,
or some other ordering. We call these constraints fixed-
ordering constraints, label them " , and prove in online
Appendix A (an electronic companion to this paper is avail-
able as part of the online version that can be found at
http://or.journal.informs.org/) that for any such set of con-
straints "—that is, for any fixed ordering of prices—the

following result holds:

Theorem 1. Model 2, together with the addition of a set of
fixed-ordering constraints, is a concave optimization prob-
lem.

To simplify the discussion, we call this mathematical
program with the addition of constraints " Model 2-" with
optimal objective function value Z∗

" . In §3, we develop
a simple algorithm that enumerates possible orderings to
solve Model 2, and then use this algorithm to complete a
series of computational experiments to assess the effective-
ness of our heuristics and to generate managerial insights.
In addition, to develop theoretical insights, as well as

efficient optimization algorithms and heuristics, we focus
on a variety of special cases of this model. In general,
these are cases in which some combination of the following
restrictions apply: capacity may be unlimited rather than
restricted; residual demand may be limited to one period in
the system (that is, K = 1); and the model parameters (i.e.,
demand curves, inventory holding and production costs,
proportion of unsatisfied customers who choose to wait,
and capacities) may be stationary rather than time varying.
We present an algorithm that, although exponential in its
complexity, allows us to solve relatively small instances of
the original Model 2 presented above, and then move on
to special cases of Model 2 to develop solutions and algo-
rithms.
We focus first on the most basic special case of Model 2,

the one-period interaction problem (that is, the problem
with K = 1) with stationary parameters and unlimited
capacity. For clarity, we refer to this as Model 2-(K = 1�
Q = �� with stationary parameters. Surprisingly, in this
case we can develop a closed-form expression for the opti-
mal pricing policy. In particular, in §4, we develop closed-
form expressions for five prices phigh, plow, p3-high, p3-medium,
and p3-low and prove:

Theorem 2. For any uncapacitated one-period interaction
problem with stationary parameters, the following policy is
optimal:

(1) �p1�p2�����pT−1�pT �=�phigh�plow�����phigh�plow�
when T is even;

(2) �p1�p2�����pT−2�pT−1�pT �=�phigh�plow�����phigh,
plow�p3-high�p3-medium�p3-low� when T is odd.

Furthermore, we show that if p∗ represents the optimal
noninteraction price for this model (that is, the price that
maximizes the profit from the demand originated and real-
ized at period t), then phigh, p3-high, and p3-medium are all
greater than p∗, and plow and p3-low are both less than p∗.
These results imply that a periodic pricing strategy that

skims off high-valued customers in the first period and
serves many of the low-valued customers in the following
period is optimal for the infinite horizon one-period inter-
action problem. This is conceptually similar to some of
the results in the intertemporal price discrimination models
cited in the introduction to this paper. Under this high-low
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pricing strategy, it is optimal to price higher than the non-
interaction price (p∗) in the first period with the intention
of absorbing surplus from high-valued customers, and then
price lower than p∗ in the next period to absorb surplus
from low-valued customers before some of them exit the
market.
Returning to our Jockey undershirt example, these results

support the strategy of that firm, which manages to extract
additional money from the big spending coauthor of this
paper, while still selling undershirts to the thrifty coauthor.
Of course, many firms, including most famously Wal-Mart,
have adopted everyday low price (EDLP) strategies, that
appear to contradict these results. In the concluding section
of this paper, we address this apparent contradiction.
Next, we identify the following property of solutions to

our general Model 2 and use this property to determine
optimal solutions for some special cases and to develop
heuristic algorithms for others. First, we define:

Definition 1 (Pricing Plan). Let p= �p1� p2� � � � � pt� be
a vector of prices that is a feasible solution to Model 2. We
call p a pricing plan.

Now, define a length K subplan of this plan as follows:
PS�t�K� = �pt+1� � � � � pmin�t+K�T ��. Note that this is either
a length K subsequence of prices (when t < T −K), or a
sequence that reaches from time t + 1 until the end of the
horizon (when t � T − K). It is easy to see that demand
can be decomposed as follows:

Property 1 (Price/Demand Decomposition Property).
For any pricing plan in Model 2, if in a length K subplan
PS�t�K�, min�pt+1� � � � � pmin�t+K�T �� � pt , then there will
be no residual demand from periods 1 through t impacting
demands in any periods t + 1� � � � � T .

Proof. Recall that for the K-period demand interaction
case, the customers in the system at period t are those
whose reservation prices have not exceeded the price at
period t, pt . Therefore, if the manufacturer prices its prod-
uct higher than pt for the next K periods, then the residual
customers coming from periods t−K to t will not be able
to observe a price that is less than their reservation price,
and hence will be forced to leave the system. Therefore,
if min�pt+1� � � � � pmin�t+K�T ��� pt for any t, then customers
in the system at time t whose demand is not satisfied by
time t will never have their demand satisfied. �

Given this property, we define:

Definition 2 (Regeneration Point). Period t where
2 � t � T is referred to as a regeneration point if
min�pt� � � � � pmin�t+K−1� T ��� pt−1.

Furthermore, we assume that the first period of the plan-
ning horizon is a regeneration point, and we define dummy
period T + 1 to be another regeneration point.

Definition 3 (Pricing Sequence). Let Suv represent a
subset of a pricing plan p that includes the components of
p for all periods between the two consecutive regeneration
points u and v, i.e.,

Suv=�pi� i=u�����v−1 �u and v are regeneration points��

where 1 � u � v � T + 1. Then, we call Suv a pricing
sequence.

If a pricing plan involves n regeneration points, then the
plan can be decomposed into n−1 pricing sequences. Also
note that there must be at least one pricing sequence, which
can be the entire pricing plan, and that we define a mini-
mal length pricing sequence to be a pricing sequence that
cannot be decomposed into smaller pricing sequences.
Given these definitions, we consider the one-period inter-

action problem with time-varying parameters and unlim-
ited capacity, that is, Model 2-(K = 1, Q =�) with time-
varying parameters. By characterizing the structure of the
optimal solution to this problem, we are able to develop a
polynomial time algorithm to optimally solve it. In particu-
lar, we observe that for the one-period interaction case, the
regeneration point conditions become equivalent to price
markups. In other words, if pt−1 � pt , then a regeneration
point is said to occur at period t. This simple characteriza-
tion of the regeneration points leads to an important obser-
vation about the structure of pricing sequences in this case:

Lemma 1. For the one-period interaction case, prices in
any minimal length pricing sequence are nonincreasing.

Proof. Price levels in a minimal length pricing sequence
cannot increase, otherwise it would be decomposed into
further subsequences which contradicts the minimality of
the sequence. �

Based on this lemma, in §4.2 we develop a shortest-path-
based optimal algorithm that optimizes over all possible
sets of regeneration points.
Unfortunately, when K > 1, a result analogous to

Lemma 1 does not hold. Consider, for example, the follow-
ing three-period interaction problem with stationary param-
eters (that is, T = 7, K = 3 and �t

k = 1, Dt = 30 − pt ,
ht = 0, ct = 0 for all t = 1� � � � �7). The optimal pricing
plan (p = [26.8, 23.6, 18.9, 12.0, 24.5, 18.5, 9.8]) con-
sists of two nonincreasing pricing subplans: (26, 8, 23.6,
18.9, 12.0) and (24.5, 18.5, 9.8). Unfortunately, period 5
is not a regeneration point because customers originating
from period 4 purchase the product at period 7. The prob-
lem therefore cannot be decomposed into two subproblems,
and a sequence of decreasing prices does not coincide with
a minimal length price sequence. Thus, the characteriza-
tion of the optimal price for this problem is in general a
formidable task.
However, by focusing on nonincreasing pricing se-

quences, and using the insight we developed while creating
the algorithm and closed-form solution discussed above,
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in §5 we are able to develop very effective heuristics for
the general Model 2. In fact, for the K-period interaction
problem with stationary parameters, unlimited capacity, and
nonincreasing pricing sequences, we develop a closed-form
expression for optimal pricing. For the general Model 2,
we develop a shortest-path-based heuristic and show that
our heuristic proves to be quite effective in computational
study.
As we mentioned in the introductory section, our paper

is most closely related to Conlisk et al. (1984) and Sobel
(1991), which consider a durable good monopolist in a mar-
ket where a stationary cohort of new customers arrives in
each period and no customer leaves the market before pur-
chasing the good. All customers are strategic (thus, they
buy in the period in which their utility is maximized), but
customers differ in their willingness to pay—the reservation
prices of high-type and low-type customers are V1 and V2
(V1 > V2), respectively. Under this setting, the authors show
that a cyclical pricing policy such that the firm sells only
to high-type customers in most periods, but offers a mark-
down (at the end of each cycle) to capture the low-type
customers, is a subgame perfect equilibrium.
Our models and results differ from these in several im-

portant ways. We allow new customers to enter into the
system in each period, but customers will consider buying
the good only for a finite number of periods. This assump-
tion plays a crucial role on the length of an optimal pricing
sequence and the prices within the sequence. In particular,
when K = 1 with stationary parameters, we also show that
a two-period pricing sequence maximizes the firm’s aver-
age profit regardless of the spread of reservation prices and
that prices are fluctuating around the optimal noninterac-
tion price (i.e., the price which maximizes the profit from
the demand originated and realized in the same period). In
Conlisk et al. (1984) and Sobel (1991), customers never
leave the market until they purchase the good, and thus
all customers eventually buy the good. However, the length
of an optimal pricing sequence depends on the spread of
the reservation prices, and the prices within a sequence are
always above (if the proportion of high-type customers is
small) or below (if the proportion of high-type customers
is large) the optimal noninteraction price. Furthermore, in
contrast to previous models, we develop solution techniques
for situations in which demand and problem parameters are
nonstationary during the planning horizon, which allows us
to model situations in which the customers become more
(less) price sensitive, and in which the production cost
decreases (increases) over time. Finally, we consider both
limited and unlimited capacity to investigate how capacity
impacts the efficacy of the dynamic pricing strategies. In
addition, one focus of this paper is on developing effective
solution techniques for these models (closed form or opti-
mal when possible, heuristic when appropriate) so that the
impact of intertemporal demand interaction and dynamic
pricing can be tested under a variety of conditions.

The remainder of this paper is structured as follows.
In §3, we present the algorithm that results from Theo-
rem 1. In §4, we develop the optimal closed-form expres-
sion for the one-period interaction problem with stationary
parameters and unlimited capacity, and the optimal algo-
rithm for the general one-period interaction problem with
unlimited capacity. In §5, we use the insight generated in
§§3 and 4 to develop effective heuristics for versions of
Model 2. In §6, we present results of computational test-
ing, where we investigate the effectiveness of heuristics for
the model, and explore the impact of residual demand on
production and pricing decisions. Finally, in §7, we discuss
an alternate model and conclude.

3. Optimal Algorithm for Model 2
Recall that Theorem 1 states that Model 2, with the addition
of a set " of fixed-ordering constraints (that is, Model 2-" ),
is a concave optimization problem. In this section, we use
this result to develop an algorithm for the problem.
Because the problem is reduced to an ordinary con-

cave optimization problem under any realization of fixed-
ordering constraints " , one approach to solve the original
problem is to solve Model 2-" for all " .

Corollary 1. Let " be a set of fixed-ordering constraints
determined by each fixed ordering of prices. The optimal
pricing and manufacturing plan for Model 2 (i.e., the gen-
eral K-period interaction problem) can be found by solving
P" for all " .

Algorithm.
Step 1. Let Zbest = 0.
Step 2. For each "

Solve Model 2-" to get the optimal objective
function value Z∗

"

If Z∗
" > Zbest , then update Zbest =Z∗

"

Step 3. Z∗ =Zbest .

Although the algorithm is guaranteed to find the optimal
solution for small problems, the number of possible fixed
orderings grows exponentially in T . Thus, we are motivated
to investigate some structural properties of the optimal
solution as well as special cases to design more efficient
algorithms. We first start with the one-period interaction
problem with unlimited capacity, then use the insights gen-
erated in this analysis to solve more complex cases of the
problem.

4. Optimal Solutions for the One-Period
Interaction Problem with
Unlimited Capacity

We first focus on a special case: the one-period interaction
problem with unlimited capacity. For clarity, we call this
Model 2-(K = 1, Q =�). For notational simplicity, we let
�t
1 = �t for all t = 1� � � � � T . Note that �t

k = 0 for k > 1. In



Ahn, Gümüş, and Kaminsky: Pricing and Manufacturing Decisions When Demand Is a Function of Prices in Multiple Periods
1046 Operations Research 55(6), pp. 1039–1057, © 2007 INFORMS

the one-period interaction problem, up to 100�t% of unsat-
isfied new demand in each period can be satisfied in the
next period if the price is sufficiently low. For this special
case of our model, we are able to efficiently determine the
optimal solution. In particular, we can explicitly solve the
problem with stationary parameters, and give a closed-form
expression for optimal prices. With time-varying parame-
ters, we develop a shortest-path-based algorithm that deter-
mines an optimal pricing plan in polynomial time.

4.1. Model 2-(K = 1, Q=�) with
Stationary Parameters

Consider the 1one-period interaction uncapacitated prob-
lem with stationary parameters (that is, st =, do

t = do, �t =
�, ct = c, ht = h for t = 1� � � � � T ). In other words, the
variable production cost, holding cost, proportion of cus-
tomers that choose to wait for one more period, and new
customer demand are the same for all periods. Recall that
in Theorem 2, we discussed the optimal pricing plan for
this problem. In fact, the optimal pricing plan consists of
T /2 2-period optimal pricing sequences when T is even
and �T − 3�/2 2-period optimal pricing sequences and one
3-period optimal pricing sequence when T is odd. Note
that it suffices to consider only a sequence of decreasing
prices as a candidate for an optimal pricing sequence. This
follows immediately from Lemma 1, in which we argue
that regeneration points coincide with periods with price
markups. Limiting our attention exclusively to a sequence
of decreasing prices, we characterize an n-period optimal
pricing sequence that maximizes the profit for n periods
in Lemma 2. In Theorem 3, we then show that repeating
the 2-period optimal pricing sequence maximizes the aver-
age profit; therefore, it is optimal when T is even. All that
remains is to deal with the case when T is odd—we address
this detail in online Appendix F.
To determine the n-period optimal pricing sequence,

let pn be a 1 × n vector of decreasing prices (i.e.,
p1 � p2 · · ·� pn) and fn�pn� be the firm’s profit for n peri-
ods under pricing sequence pn:

fn�pn�= fn�p1� p2� � � � � pn�

=
n∑

t=1
�pt − c��d0− spt�

+�
n∑

t=2
s�pt − c��pt−1−pt�� (5)

When n = 1, finding the optimal price that maximizes
f1�p1�= �p1− c��d0− sp1� is trivially given by

p∗ = d0+ sc

2s
� (6)

We call p∗ the optimal noninteraction price because there
will be no demand interaction if p∗ is repeated. If the opti-
mal noninteraction price is repeated for n periods, the firm’s

profit is simply

f NI
n �p∗� p∗� � � � � p∗�=

n∑
t=1

�p∗ − c��d0− sp∗�

=−ncd0+
n∑

t=1
��d0+ sc�p∗ − s�p∗�2�

= n
�do − sc�2

4s
� (7)

However, in general, the noninteraction price is not opti-
mal, so we derive an expression for an optimal n-period
pricing sequence. To do this, first let

0fn�pn�=0fn�p1� p2� � � � � pn�

= fn�p1� p2� � � � � pn�− f NI
n �p∗� p∗� � � � � p∗�

n

be the average profit increase per period under pn over
�p∗� p∗� � � � � p∗�. It is clear that a vector of prices that max-
imizes fn�pn� also maximizes 0fn�pn�. That is, if p̄n =
�p̄1� p̄2� � � � � p̄n� maximizes fn�pn�, then

0fn�p̄n�=
fn�p̄1� � � � � p̄n�− f NI

n �p∗� � � � � p∗�
n

�
fn�p1� � � � � pn�− f NI

n �p∗� � � � � p∗�
n

=0fn�pn�

for all decreasing prices pn; therefore, p̄n defines an
n-period optimal pricing sequence. In online Appendix C,
we prove that:

Lemma 2. An n-period optimal pricing sequence p̄n is
given by

p̄i = p∗�1+ 1∗
i �n��� i = 1 � � � n� (8)

where

1∗
0�n�= 1− c

p∗ and

1∗
i �n�= 2n−i�n�1∗

i−1�n�− 1∗
0�n�

2n−i+1�n�
� i = 1 � � � n�

(9)

and

20�n�= 1� 21�n�= 2+ 2
�

� and

2i�n�=




(
2+ 2

�

)
2i−1�n�−2i−2�n�

for i = 2 � � � n− 1�
2
�

2i−1�n�−2i−2�n� for i = n�

(10)

The average profit increase under the n-period optimal
pricing sequence (over noninteraction pricing) is

0f ∗
n = sp∗2�

n

[
a

2
�1∗

1�n�− 1∗
n�n��

]
�
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We use 0fn instead of fn�pn� to determine the length
of the optimal price sequence that leads to the greatest
average profit increase. Note that if an n-period optimal
pricing sequence is used, then the increase in the average
profit depends only on the difference between the price
distortion (from the noninteraction price p∗) in the first
period (i.e., 1∗

1�n�) and the price distortion in the last period
(i.e., 1∗

n�n�) in the price sequence. We analyze the aver-
age profit increases with respect to the length of the price
sequence, n, by characterizing the behavior of 1∗

1�n� and
1∗

n�n� in n, and then show that the 2-period optimal pricing
sequence indeed maximizes the average profit increase. We
prove this key result by developing an upper bound on the
average profit increase under an n-period optimal pricing
sequence for all n. Using several technical lemmas proved
in online Appendix D, we characterize the asymptotic prop-
erties for both 1∗

1�n� and 1∗
n�n�, and use these results in

online Appendix E to prove the following theorem:

Theorem 3. The optimal 2-period pricing sequence maxi-
mizes the average profit increases for the one-period inter-
action uncapacitated problem with stationary parameters.

Theorem 3 implies that a periodic pricing strategy that
skims off high-valued customers in the first period and
serves many of the low-valued customers in the following
period is optimal for the infinite horizon one-period inter-
action problem. Under this high-low pricing strategy, it is
optimal to price higher than the noninteraction price (p∗) in
the first period with the intention of absorbing surplus from
high-valued customers, and then price lower than p∗ in the
next period to absorb surplus from low-valued customers
before some of them exit the market. That is,

phigh = p∗ + �p∗ − c�

[
���+ 2�
4�+ 4−�2

]
� p∗�

plow = p∗ + �p∗ − c�

[
���− 2�
4�+ 4−�2

]
� p∗�

(11)

where p∗, c, and � denote, respectively, the optimal
noninteraction price, the unit production cost, and the por-
tion of unsatisfied customers transferred from the previ-
ous period. Note that both inequalities become strict when
� > 0.
Although a cyclic pricing pattern is conceptually similar

to the results in intertemporal price discrimination models
of Sobel (1991) and Conlisk et al. (1984), there are several
key differences. In particular, the fact that customers remain
in the market for a finite number of periods plays a crucial
role in the length of an optimal pricing sequence and prices
within the sequence. First, as we discussed previously, the
spread of reservation prices between high-valuation and
low-valuation customers affects the length of an optimal
pricing sequence in their models. In our model, the effect
that customers will stay one more period (K = 1) results
in a 2-period pricing sequence regardless of the spread of
reservation price. Second, in their models, customers never

leave the market until they purchase the product; thus, the
seller always finds it optimal to sell to all customers. But,
depending on the proportion of high-type customers in a
cohort, the prices in an optimal pricing sequence can be
either always above or below the optimal noninteraction
price. On the other hand, customers in our model will leave
the market after one period, thus, the nonsale price phigh

is always higher than the optimal noninteraction price to
skim off the top and the markdown price plow is always less
than the optimal noninteraction price to sell to customers
with low reservation price. Even when the seller follows an
optimal pricing sequence, not all customers are served.
In a finite horizon problem, repeating this high-low pric-

ing strategy is optimal when T is even. On the other hand,
such a strategy would be cut short when T is odd, so
a small modification of the pricing strategy is required.
Indeed, when T is odd, a strategy that consists of 2-period
optimal pricing sequences for T −3 periods and a 3-period
optimal price sequence for the last three periods is opti-
mal, as we show below. When a 3-period optimal pricing
sequence is used, it is interesting to note that prices offered
in the first two periods are higher than p∗, while the price
in the third period is lower than p∗ to sell to customers
with low reservation prices. It is easy to verify that

p3-high = p∗ + �p∗ − c�

[
���2+ 4�+ 2�
2�2+ 8�+ 4−�3

]
� p∗�

p3-med = p∗ + �p∗ − c�

[
�3

2�2+ 8�+ 4−�3

]
� p∗�

p3-low = p∗ + �p∗ − c�

[
���2− 2�− 2�
2�2+ 8�+ 4−�3

]
� p∗�

Finally, in online Appendix F, we complete the proof of
Theorem 2 by addressing the odd horizon length case.

4.2. Model 2-�K = 1, Q=�� with
Time-Varying Parameters

In contrast to the case with stationary parameters, no
closed-form solution exists for time-varying parameters.
Instead, we develop an efficient algorithm to determine the
optimal pricing plan using Lemma 1. Recall that the regen-
eration point conditions are equivalent to price markups in
the one-period interaction price. That is, if the price in any
period t is greater than or equal to the price charged in the
previous period, period t is a regeneration point and the
original problem can be decomposed into two subproblems
(one up to period t−1 and the other from period t). Every
pricing sequence between two regeneration points must be
monotonically decreasing and we develop a shortest-path-
based algorithm using this observation.
Without loss of generality, we consider a problem sat-

isfying a nonspeculative production condition ct � ct−1 +
ht−1, t = 1� � � � � T , because any arbitrary problem instance
can be reformulated as an equivalent problem satisfying the
condition. With unlimited capacity and the nonspeculative
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condition, there is no incentive to carry inventory, i.e.,
It = 0 for all periods and the production quantity equals
demand realized in each period (xt = dt , t = 1� � � � � T ).
Then, Model 2 for K = 1 can be simplified as follows:
Model 2-�K = 1, Q =�� with Time-Varying
Parameters

max
pt�dt � r

k
t

T∑
t=1

pt�dt − ct� (12)

s.t. dt = r0t + r1t �

0� pt � do
t /st�

rk
t =




do
t − stpt if k = 0�

�t−1st−1 pt−1−pt!
+ if k = 1�

After substituting for dt and rewriting the objective func-
tion, we get

max
0�pt�do

t /st
t=1�����T

[ T∑
t=1

�pt − ct��d
o
t − stpt�

+
T∑

t=2
�pt − ct��t−1st−1 pt−1−pt!

+
]
� (13)

The concavity of (13), together with Lemma 1, enables
us to decompose the problem into several independent sub-
problems, each of which starts at a regeneration point and
contains a monotonically decreasing pricing sequence. Let
R = �t1 = 1� t2� � � � � tn = T + 1� be the set of regeneration
periods. Then, Equation (13) can be rewritten as the sum
of n− 1 independent maximization problems:

max
0�pt�do

t /st
t=1�����T

n−1∑
i=1

ti+1−1∑
t=ti

[
�pt − ct��d

o
t − stpt�+�t−1st−1

· �pt − ct��pt−1−pt�

]
(14)

subject to t1=1� t2�����tn=T +1� are regeneration points.
This suggests that finding the optimal pricing plan is

equivalent to finding the optimal set of regeneration points
and solving the pricing problem for each subsequence inde-
pendently; and this, in turn, suggests a shortest-path-based
algorithm for this problem (see Figure 4).

Algorithm.
Step 1. Calculate E�i� j� for 1� i < j � T + 1 as follows:

E�i� j� =− max
�pt�

j−1
t=i

[j−1∑
t=i

 �pt − ct��d
o
t − stpt�!

+
t−1∑

t=i+1
 �t−1st−1�pt−ct��pt−1−pt�!

]
(15)

s.t. pi � · · ·� pj−1�

0� pt � do
t /st for all t = i� � � � � j − 1�

and let �pt�
j−1
i = �pi� pi+1� � � � � pj−1� be the prices deter-

mined in E�i� j�.

Figure 4. The shortest path that goes through the opti-
mal set of regeneration points.

t = 1 t = i t = T t = T + 1

E1, i → p1 ≥ p2 ≥ … ≥ pi–1

E1, T+1 → p1 ≥ p2 ≥ … ≥ pT

Ei,T+1 → pi ≥ … ≥ pT

Step 2. Construct a complete graph GT with nodes t =
1�2�3� � � � � T +1 and weights on arc �i� j� defined as E�i� j�.
Step 3. Solve the shortest-path problem on the graph

GT from node 1 to T + 1.

Let �t1 = 1� t2� t2� t3� � � � � tn−1� tn = T +1� be the shortest
path from node 1 to T + 1. Then, the tis are regeneration
points, the optimal pricing plan is

{
p∗

t

}T

t=1 =
{
�pt�

t2−1
1 � �pt�

t3−1
t2

� � � � � �pt�
T+1
tn−1

}
�

and the optimal production plan is

�x∗
t �

T
t=1 =

{
�dt�

t2−1
1 � �dt�

t3−1
t2

� � � � � �dt�
T+1
tn−1

}
�

Step 1 of the algorithm requires maximization of a con-
cave quadratic objective function with linear inequalities
for each �i� j�, where 1� i < j � T + 1, which is globally
solvable in polynomial time by interior point methods. Let
TC be the time complexity of solving one concave quadratic
program. Then, in Step 2 of the algorithm, constructing a
complete graph requires O�T 2TC�. Because the time com-
plexity of solving a shortest-path algorithm on a complete
graph is O�T 2�, the overall complexity of the algorithm is
O�T 2TC�.
We now show that the algorithm above finds the opti-

mal pricing plan by finding the optimal set of regeneration
points. Note that −E�ti� ti+1� is the maximum profit that can
be generated from period ti and period ti+1 − 1 when any
profit from residual demand realized in period ti is ignored.
Let �pt�

ti+1
t=ti

and �xt�
ti+1
t=ti

be a sequence of decreasing prices
and corresponding production quantities which determine
E�ti� ti+1�. Suppose that two arcs, �ti� ti+1� and �ti+1� ti+2�, are
on the shortest path, but ti+1 is not a regeneration point, i.e.,
pti+1−1 � pti+1 � pti+1+1 � · · · � pti+2−1. From the definition
of E�i� j�, E�ti� ti+2� is no greater than E�ti� ti+1�+E�ti+1� ti+2�, and
this contradicts the fact that both arcs are on the shortest
path. Therefore, the shortest path will only consist of paths
connecting regeneration points, so that the algorithm deter-
mines the optimal set of regeneration points as well as the
optimal pricing and production plan.
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5. Heuristic Pricing Policies for
K -Period Interaction

Building on our analysis of the one-period interaction
model, we consider the K-period interaction case, in which
some portion of demand can remain in the system up to
K periods. Although this problem can be decomposed as
in the single-period interaction case, a pricing sequence for
the K-period problem is not necessarily a monotonically
nonincreasing sequence; therefore, regeneration points do
not necessarily coincide with price markups. This means
that solving for a nondecreasing sequence of prices which
maximizes the profit for n periods does not generate an
n-period optimal pricing sequence.
Because of this, we focus on an intuitive and efficient

pricing scheme based on the result of the one-period inter-
action model. In particular, we develop heuristic pricing
policies consisting of nonincreasing sequences of prices.

5.1. Closed-Form Expression for Unlimited
Capacity and Stationary Parameters
(Model 2-�Q=��)

As in the one-period interaction case, we start with a
K-period interaction model with stationary parameters, and
no capacity limitation. In addition, we assume that a con-
stant fraction of unsatisfied customers will wait in the mar-
ket up to K periods (i.e., �t

k = � for all k = 1� � � � �K,
t = 1� � � � � T ). Note that because all parameters are assumed
to be stationary, nonanticipation constraints hold for all
periods (i.e., ct+1 � ct +ht , t = 1� � � � � T − 1), so that there
is no incentive to carry inventory in any period. As a result,
demand realized in each period, dt , must be equal to the
production quantity in the same period, xt . After substitut-
ing xt = dt into Model 2, we obtain the following objective
function for the K-period interaction case:

f �p�=
T∑

t=1
�pt − ct��d

0− spt�+
T∑

t=2

min�t−1�K�∑
k=1

�s�pt − c�

·  pm�t� k� −pt!Ipm�t� k��pt
� (16)

In general, a K-period interaction problem cannot be
decomposed by decreasing pricing sequences. However, for
long enough time horizons, it makes sense that decreasing
pricing sequences will perform reasonably well. Consider
an n-period sequence of decreasing prices and a pricing
plan that repeats this n-period sequence (i.e., an n-period
cyclic pricing plan such that pjn+h = pt , h = 1� � � � � n− 1,
and j � 0). When T is sufficiently large and a multiple
of n, no residual demand will be realized between two
periods in different cycles. In this case, the only demand
interactions realized are the ones caused by decreasing
prices within an n-period sequence of decreasing prices.
Thus, we are motiviated to find a nonincreasing sequence
of prices which maximizes the average profit contribu-
tion under the assumption that the same sequence will be

repeated in a pricing plan. Therefore, the profit from an
n-period sequence of decreasing prices can be expressed as

fn�p�=
n∑

t=1
�pt − c��d0− spt�

+
n∑

t=2
min�t − 1�K��s�pt − c��pt−1−pt�� (17)

Following our single-period interaction result, we give
a closed-form expression for the optimal nonincreasing
sequences of length n which maximizes Equation (17).

Lemma 3. Among all sequences of decreasing prices of
length n, the following sequence maximizes Equation (17)
in the K-period interaction case:

pi = p∗�1+ 1i�� i = 1 � � � n� (18)

where 1i, i = 1� � � � � n, satisfies the following recursive rela-
tionship. Define a= �1− c/p∗�. For n�K + 1,

1i =




1� i = 0�

�i− 1� 2n−i

2n−i+1
1i−1− a ∗ �n− 1�!

�i− 1�!
n− 1
2n−i+1

+a ∗
∑n−1

j=i ��j − 1�!/�i− 1�!�2n−j

2n−i+1
�

i = 1 � � � n− 1�
�n− 1�20

21
1i−1−

a

21
�n− 1�� i = n�

(19)

2i =




1� i = 0�
21 = 2�n− 1+�−1�� i = 1�
2�n− i+�−1�2i−1− �n− i+ 1�22i−2�

i = 2 � � � n�

(20)

For n > K + 1,

1i =




1� i = 0�

�i− 1� 2n−i

2n−i+1
1i−1− a ∗ K!

�i− 1�!
Kn−K

2n−i+1

+a ∗
∑K

j=i��j − 1�!/�i− 1�!�2n−j

2n−i+1
�

i = 1 � � �K�

K2n−i

2n−i+1
1i−1−

a

2n−i+1
Kn−i+1� i =K + 1 � � � n�

(21)

2i=




1� i=0�
2�K+�−1�� i=1�
2�K+�−1�2i−1−�K�22i−2� i=2���n−K�

2�n−i+�−1�2i−1−�n−i+1�22i−2�
i=n−K+1�����n�

(22)
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As in the one-period interaction case, all 2is and 1is are
functions of sequence length n (i.e., 2i�n� and 1i�n�), but
we suppress this dependence for ease of exposition. The
proof is in online Appendix G.

5.2. Capacity Constraints and Time-Varying
Parameters (Model 2)

To find a heuristic solution for the most general Model 2
based on the results and intuition developed in prior sec-
tions, we focus on nonincreasing pricing sequences, extend
the optimal algorithm from §5.1 to the K-interaction period
problem, and then develop a linear program to deal with
capacity constraints.

Heuristic Algorithm.
Step 1. Let Ph = �Ph

t �T
t=1 be the pricing plan found by

solving the following shortest-path problem:
(a) Calculate E�i� j� for 1� i < j � T + 1 as follows:

E�i� j� = − max
�xt �It �pt�

j−1
t=i

[j−1∑
t=i

 pt�d
o
t −stpt�!+

j−1∑
t=i+1

min�t−1�K�∑
k=1

�t−k
k st−k

·  pt�pt−1−pt�!−
j−1∑
t=i

ctxt −
j−1∑
t=i

htIt

]

s.t. It−1+ xt = It +  do
t − stpt!

+
min�t−1�K�∑

k=1
�t−k

k st−k�pt−1−pt�

∀ t = i� � � � � j − 1�
pt � do

t /st ∀ t = i� � � � � j − 1�
pt � pt+1 ∀ t = i� � � � � j − 2�
xt �Qt ∀ t = i� � � � � j − 1�
xt� It� pt � 0 ∀ t = i� � � � � j − 1�
Ii−1 = 0�

and let �Ph
t �

j
i = �ph

i � p
h
i+1� � � � � p

h
j−1� be the prices deter-

mined in E�t1� t2�
.

(b) Construct a complete graph GT with nodes t =
1�2�3� � � � � T + 1 and weights on arc �t1� t2� defined as
E�t1� t2�

.
(c) Solve the shortest-path problem on the graph

GT from node t = 1 to t = T + 1. Let �t1 = 1� t2�
t3� � � � � tn−1� tn = T +1� be the shortest path from node t1 =
1 to tn = T + 1. Then, construct a pricing plan
�Ph

t �T
t=1 =

{
�Ph

t �
t2
1 � �Ph

t �
t3
t2
� � � � � �Ph

t �T+1
tn−1

}
�

Step 2. Calculate the demand, Dh
t , for each period gen-

erated by the heuristic pricing sequence as follows:

Dh
t =




 do
t − stP

h
t ! if t = 1�

 do
t − stP

h
t !+

min�t−1�K�∑
k=1

�t−k
k st−k

·
[
min

i∈�1�����k�
P h

t−i −Ph
t

]+
if 2� t � T �

(23)

Step 3. Solve the following linear program to determine
optimal allocation of capacity:

max
�xt �dt � It �

T
t=1

T∑
t=1

Ph
t dt −

T∑
t=1

ctxt −
T∑

t=1
htIt (24a)

s.t. xt + It−1 = dt + It� (24b)

xt �Qt�

dt �Dh
t �

xt� dt� It � 0 ∀ t = 1� � � � � T �

In Step 1(a) of the algorithm, we define a concave
quadratic function, E�i� j�, to approximate the profit accrued
between i and j − 1. The first term in E�i� j� is the rev-
enue from the demand originated and realized in the same
period, the second term represents the revenue from the
residual demand, and the third and fourth terms are pro-
duction and inventory costs. We find (pi� � � � � pj−1) which
maximizes E�i� j� under the following constraints: initial
inventory and inventory balance constraints, nonnegative
demand constraints (pt � do

t /st), fixed-ordering constraints,
and capacity constraints. We also assume that all variables
are nonnegative.
Step 1(a) of the algorithm requires maximization of a

concave quadratic objective function with linear inequal-
ities for each �i� j�, where 1 � i < j � T + 1, which
is globally solvable in polynomial time. Let TC be the
time complexity of solving one concave quadratic program.
Then, in Step 1(b) of the algorithm, constructing a com-
plete graph requires O�T 2TC�. Because time complexity of
solving a shortest-path algorithm on a complete graph is
O�T 2�, the overall complexity of Step 1 of the heuristic
algorithm is O�T 2TC�.
Note that for the problem with time-varying parame-

ters, nonanticipative costs, and no capacity constraints, this
algorithm without Step 3 finds the best solution among
solutions with nonincreasing pricing sequences. Step 3
transforms this solution into a feasible solution for the
capacity-constrained problem. In §6, we test the perfor-
mance of this heuristic.

6. Computational Study
We conducted a computational study to develop insights
into the impact of demand interaction on profit and man-
ufacturing decisions, as well as the effectiveness of our
heuristics. We created 972 problem instances by varying
problem parameters and demand assumptions and tested
three different policies: the optimal pricing/manufacturing
policy that explicitly takes demand interactions into ac-
count, our proposed heuristic policy, and a myopic policy
that ignores demand interactions (that is, assuming K = 0)
and follows a pricing schedule determined by a myopic
algorithm.
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6.1. Design of the Computational Study

We first consider a 6-period planning horizon (T = 6) and
created a set of experiments by varying several model
parameters and demand patterns.

Demand Curve Scenarios. We examine four scenar-
ios for demand variations: stationary, increasing, decreas-
ing, and seasonal demand. We consider a standard demand
curve, Dt�pt�= d0t −stpt , where d0t and st are, respectively,
demand at zero price and sensitivity of demand to price
variations. Depending on the demand scenario, we vary d0t
in different ways, while keeping p0t constant. This corre-
sponds to a series of linear demand curves whose intersec-
tion with the demand axis is changing in three different
fashions (seasonal, increasing, and decreasing) around the
standard demand curve, while intersection with price axis is
constant throughout the periods. For computational study,
we use Dq�pt� = 30 − pt as our standard demand price
curve. The actual demand curves for each scenario follow
(see Figure (5)):
(1) Stationary demand curve scenario: D1�p1� =

D2�p2�=D3�p3�=D4�p4�=D5�p5�=D6�p6�= 30−p.
(2) Increasing demand curve scenario: D1�p1� = 15 −

5
10p1; D2�p2� = 21− 7

10p2; D3�p3� = 27− 9
10p3; D4�p4� =

33− 11
10p4; D5�p5�= 39− 13

10p5; D6�p6�= 45− 15
10p6.

(3) Decreasing demand curve scenario: D1�p1� = 45−
15
10p1; D2�p2� = 39− 13

10p2; D3�p3� = 33− 11
10p3; D4�p4� =

27− 9
10p4; D5�p5�= 21− 7

10p5 ;D6�p6�= 15− 5
10p6.

(4) Seasonal demand curve scenario: D1�p1� = 15 −
5
10p1; D2�p2� = 30 − p2; D3�p3� = 45 − 15

10p3; D4�p4� =
45− 15

10p4; D5�p5�= 30−p5; D6�p6�= 15− 5
10p6.

Interaction Levels. (K = 1�2�3).
Capacity Levels. We keep capacity constant over the

planning horizon, although at different levels. Those levels

Figure 5. The price-demand curves for each scenario.

Pr
ic

e

Demand

Pr
ic

e

Demand

Pr
ic

e

Demand

Pr
ic

e

Demand

Dq(p) = 30 –p

30

3030

3030

Increasing demand curves

D6

D6

D1

D1

3 0

30 30

Decreasing demand curves

Stationary demand curves

D1 = … = D6

D3 = D4

D2 = D5D1 = D6

Seasonal demand curves

are defined loosely as uncapacitated, mildly capacitated,
and strictly capacitated. Because we use Dq�pt�= 30−pt

as the base demand curve, the optimal noninteraction price
when c = 0 is p∗ = 15 and the demand at p∗ = 15 is
Dq�p

∗� = 15. We set capacity levels first at infinity (unca-
pacitated case), then at 15 (mildly capacitated case), and
finally at 5 (strictly capacitated case). For the demand
curves given above, these values are calculated as follows:
(1) No capacity constraint: for this range of parameters,

no capacity is equivalent to the case where capacity is 100.
(2) Medium capacity constraint: capacity= 15.
(3) Tight capacity constraint: capacity= 5.
Production Costs. Low production cost (c = 0),

medium production cost (c = 5), and high production cost
(c = 10). We assume that production cost is constant over
the planning horizon.

Inventory Holding Costs. Low inventory holding cost
(h = 1), medium inventory holding cost (h = 2), and high
inventory holding cost (h= 10). We assume that the hold-
ing cost is constant over the planning horizon.

Customer Waiting Proportions. �t
k = �k for all

t = 1� � � � � T and k = 1� � � � �K, where � = 1 (high)�0�5
(medium), and 0�2 (low).

6.2. Analysis

For our analysis, we solve each problem instance using
three different policies: the optimal policy, our heuristic,
and a myopic policy. Let :OPT, :H , and :M be prof-
its generated by the optimal, heuristic, and myopic algo-
rithms, respectively. To compare how the optimal policy (or
the heuristic policy) fares with the myopic policy, we use
the percentage improvement in profit over myopic pricing
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as follows. Note that even when the policy is determined
myopically, the profit is determined assuming that there is
demand interaction in the underlying system:

0OPT =
:OPT−:M

:M
∗ 100�

0HEU =
:H −:M

:M
∗ 100�

Note that 0OPT−0HEU represents a gap between an opti-
mal policy and a heuristic.
We found an optimal policy using Theorem 1 and the

algorithm described in Corollary 1. This algorithm enumer-
ates all possible orderings of price sequences and solves a
concave maximization problem for each ordering. Because
an optimization problem with a quadratic and concave
objective function and a set of linear constraints is polyno-
mially solvable with complexity of O�TC�, the complexity
of the optimal algorithm is O�T !TC�. On the other hand,
the complexity of our heuristic algorithm based on the
shortest-path computation is O�T 2TC�, and the complexity
of a myopic algorithm is simply O�TC�.
Under the myopic algorithm, we first solve the pricing

model as if no demand interaction exists, then determine
the demand realization (assuming demand interaction) gen-
erated by the myopic pricing solution. Finally, we solve an
LP to determine the final production decisions.

Myopic Algorithm.
Step 1. Let pm = �Pm

t �T
t=1 be the pricing plan found by

solving the following concave maximization problem:

MT = max
�pt � xt � It �

T
t=1

[ T∑
t=1

 pt�d
o
t − stpt�!−

T∑
t=1

ctxt −
T∑

t=1
htIt

]

s.t. It−1+ xt = It +  do
t − stpt! ∀ t = 1� � � � � T �

pt � do
t /st ∀ t = 1� � � � � T �

xt �Qt ∀ t = 1� � � � � T �

xt� It� pt � 0 ∀ t = 1� � � � � T �

Table 1. 0OPT and 0HEU w.r.t. various capacity and interaction levels (i.e., K-values).

0OPT (%) 0HEU (%)

Capacity Interaction level Mean Min Max SD Mean Min Max SD

UnCap 1-period 6�53 0�71 15�95 5�77 6�53 0�71 15�95 5�77
2-period 10�99 1�19 26�96 9�69 10�99 1�19 26�96 9�69
3-period 13�73 1�40 35�56 12�26 13�62 1�40 35�56 12�31

MedCap 1-period 4�65 0�15 14�36 4�21 4�57 −0�21 14�36 4�21
2-period 7�69 0�15 23�08 6�79 7�59 −0�05 23�08 6�78
3-period 9�48 0�15 31�53 8�47 9�34 −0�02 31�53 8�45

TightCap 1-period 1�83 0�00 6�79 1�89 1�71 −0�69 6�79 1�92
2-period 2�65 0�00 10�05 2�68 2�57 −0�69 10�05 2�73
3-period 3�04 0�00 11�52 3�06 2�94 −0�69 11�52 3�09

Note. UnCap/MedCap/TightCap: no capacity/medium capacity/tight capacity.

Step 2. Calculate the demand, Dm
t , for each period gen-

erated by the myopic pricing sequence as follows:

Dm
t =




 do
t − stP

m
t ! if t = 1�

 do
t − stP

m
t !+

min�t−1�K�∑
k=1

�t−k
k st−k

·
[
min

i∈�1�����k�
Pm

t−i −Pm
t

]+
if 2� t � T �

Step 3. Solve the following linear program to determine
optimal allocation of capacity:

:M = max
�xt �dt � It �

T
t=1

T∑
t=1

Pm
t dt −

T∑
t=1

ctxt −
T∑

t=1
htIt

s.t. xt + It−1 = dt + It�

xt �Qt�

dt �Dm
t �

xt� dt� It � 0 ∀ t = 1� � � � � T �

We used the CPLEX(R) solver running on an Intel(R)
Pentium(R) 4 Mobile CPU 1.60 GHz computer with 512
MB RAM and 30 GB HDD to conduct the computational
study.

6.2.1. The Impact of Parameters on Optimal Policy.
We present the results of our numerical study in Tables 1–4.
We first examine how each problem parameter affects the
benefit of accounting for demand interaction when making
pricing and production plans. To this end, we compute 0OPT

for various scenarios and observed the following.
• On average, the gain from using the optimal policy

(0OPT) is quite significant. The average gain of the optimal
policy is 6.73%. There are many instances where the gain is
20% or more. On average, the gain from the optimal policy
(0OPT) decreases as the capacity becomes more constrained.
This is intuitive because when capacity is tight, the firm can
only sell to customers with high reservation prices anyway.
When the firm has excess capacity, on the other hand, the
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Table 2. 0OPT and 0HEU w.r.t. various capacity and the proportion of customers who stay in
the market (i.e., � values).

0OPT (%) 0HEU (%)

Capacity � Mean Min Max SD Mean Min Max SD

UnCap High 22�77 12�68 35�56 7�23 22�77 12�68 35�56 7�23
Medium 6�99 3�77 11�43 2�32 6�90 3�77 11�43 2�25
Low 1�50 0�71 2�81 0�61 1�48 0�71 2�81 0�60

MedCap High 14�97 2�97 31�53 6�39 14�81 2�97 31�53 6�41
Medium 5�47 0�93 12�00 2�83 5�36 0�92 12�00 2�84
Low 1�40 0�15 5�71 1�00 1�33 −0�21 5�71 1�00

TightCap High 3�80 0�00 11�52 3�09 3�73 0�00 11�52 3�11
Medium 2�38 0�00 8�16 2�44 2�28 −0�63 8�16 2�49
Low 1�33 0�00 4�90 1�53 1�22 −0�69 4�90 1�55

Table 3. 0OPT and 0HEU w.r.t. various capacity and inventory holding-cost parameters.

0OPT (%) 0HEU (%)

Capacity Inv. holding cost Mean Min Max SD Mean Min Max SD

UnCap Low 10�42 0�71 35�56 10�07 10�38 0�71 35�56 10�08
Medium 10�42 0�71 35�56 10�07 10�38 0�71 35�56 10�08
High 10�42 0�71 35�56 10�07 10�38 0�71 35�56 10�08

MedCap Low 8�04 0�35 31�53 7�49 7�83 −0�18 31�53 7�48
Medium 7�23 0�15 31�21 6�86 7�14 −0�21 31�21 6�84
High 6�55 0�19 31�21 6�58 6�53 0�19 31�21 6�57

TightCap Low 2�77 0�00 11�52 2�56 2�58 −0�69 11�52 2�67
Medium 2�46 0�00 10�97 2�58 2�35 −0�40 10�97 2�60
High 2�28 0�00 10�87 2�75 2�28 0�00 10�87 2�75

Table 4. 0OPT and 0HEU w.r.t. various capacity and production cost parameters.

0OPT (%) 0HEU (%)

Capacity Production cost Mean Min Max SD Mean Min Max SD

UnCap Low 10�42 0�71 35�56 10�07 10�38 0�71 35�56 10�08
Medium 10�42 0�71 35�56 10�07 10�38 0�71 35�56 10�08
High 10�42 0�71 35�56 10�07 10�38 0�71 35�56 10�08

MedCap Low 6�46 0�15 24�85 6�04 6�28 −0�21 24�85 6�04
Medium 6�67 0�35 26�79 6�32 6�58 0�23 26�79 6�27
High 8�70 0�52 31�53 8�26 8�64 0�52 31�53 8�23

TightCap Low 1�90 0�00 6�77 1�91 1�82 −0�41 6�77 1�94
Medium 2�39 0�00 8�53 2�40 2�30 −0�52 8�53 2�44
High 3�23 0�00 11�52 3�25 3�10 −0�69 11�52 3�30

Table 5. Relative frequency table of 0OPT−0HEU.

[0–0.05%]1 (0.05–0.10%] (0.10–0.20%] (0.20–0.40%] (0.40–0.80%] (0.80–1.60%] (1.60–3.20%]

N 2 758 31 50 61 60 10 2
F 3 (%) 77.98 3.19 5.14 6.28 6.17 1.03 0.21

1Class Intervals for �OPT −�HEU.
2Number of cases where �OPT −�HEU ∈ class interval.
3Percentage of cases where �OPT −�HEU ∈ class interval.
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Table 6. 0HEU w.r.t. various demand scenarios, planning horizons, and capacity values.

Planning horizon

T = 6 T = 12
Descriptive statistics of 0HEU Descriptive statistics of 0HEU

Demand curve
scenarios Capacity Mean Min Max SD Mean Min Max SD

Stationary UnCap 9�76 0�84 27�09 9�28 10�14 0�84 30�14 9�81
MedCap 6�85 0�35 22�95 6�42 6�96 0�35 24�85 6�54
TightCap 0�49 0�00 3�37 0�82 0�48 0�00 3�33 0�81

Increasing UnCap 8�48 0�71 23�42 8�05 9�08 0�74 26�71 8�75
MedCap 4�24 −0�21 15�91 4�48 4�69 −0�17 19�38 4�86
TightCap 0�15 −0�69 2�69 0�70 0�32 −0�56 3�10 0�79

Decreasing UnCap 11�66 0�99 33�66 11�09 11�41 0�95 33�83 10�93
MedCap 9�15 0�99 31�53 8�34 8�38 0�94 27�17 7�27
TightCap 4�83 1�07 11�52 2�54 3�88 0�76 10�00 2�24

Seasonal UnCap 11�62 0�90 35�56 11�24 10�67 0�87 31�81 10�27
MedCap 8�43 0�35 28�11 7�15 7�50 0�03 27�07 6�95
TightCap 4�15 1�10 8�34 1�81 3�39 0�65 8�15 1�74

optimal policy improves the profit by selling to residual
demand.
• We also notice that 0OPT increases as the demand

interaction level (represented by K) increases (Table 1). As
the demand interaction level increases, the size of residual
demand also increases, thus the firm’s profit from selling to
residual demand also increases. Similarly, 0OPT increases
as the proportion of customers who stay in the market
increases (Table 2).
• As expected, 0OPT decreases as holding or produc-

tion cost increases. Increasing operating cost decreases the
range within which intertemporal price discrimination can
take place, thus decreasing the benefit of dynamic pricing
(Tables 3 and 4).

6.2.2. Heuristic Performance. As demonstrated in
Tables 1–4, our heuristic policy performs very well. In
many cases, our heuristic either coincides with the optimal
policy or is very close to the optimal policy. As illustrated
in Table 5, in 98.76% of the instances we ran, the gap is
within 0.8%. Out of 972 problem instances, the worst case
is 3.2%.
Furthermore, the insights we developed by comparing

the optimal policy with the myopic policy continue to hold
for the heuristic. 0HEU decreases as capacity gets tight
(Tables 1–4), increases as demand interaction level (K)
increases (Table 1), increases as � increases (Table 2),
and decreases as holding cost or production cost increases
(Tables 3 and 4).
In a relatively small number of cases, the heuristic algo-

rithm diverges from optimality. These cases are character-
ized by:
• Tight capacity: the decomposition ignores inventory

carryover between subproblems, and this may lead to
heuristic errors when capacity is tight.

• High K: when K is strictly greater than one, there
might be residual demand between two subproblems be-
cause nonincreasing sequences do not decompose the prob-
lem into subproblems.
Also, for a small number of cases (41 of 972 cases),

the performance of the heuristic policy is either equal to
or slightly less than that of the myopic algorithm, i.e.,
0HEU � 0. As shown in Table 6, the negative values appear
only when the capacity is tight and the firm faces increas-
ing demand patterns. Recall that the heuristic algorithm
solves a shortest-path problem, and we find the best non-
increasing pricing sequence to represent the profit of each
arc. However, the increasing demand curve scenario under
tight capacity limitations leads to an optimal pricing pol-
icy that is increasing in time with no residual demand.
Hence, the myopic policy generates more profit by consid-
ering only current demand and solving the entire problem
without decomposition.
Finally, to evaluate the performance of the heuristic algo-

rithm for different planning horizon lengths, we conducted
additional computational experiments with the same set of
parameters, except that the length of the horizon T = 12.
Because the complexity of computing the optimal policy
grows exponentially with T , for this case we only com-
pared heuristic and myopic policies.
As Table 6 illustrates, the relative performance of the

heuristic algorithm over the myopic algorithm remains sig-
nificant as the planning horizon increases from T = 6 to
T = 12.

7. Extensions, Conclusions, and
Further Research

7.1. Pricing-Pattern Aware Customers

As we mentioned in the introduction, one reasonable cri-
tique of this model is that it assumes that consumers are
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not aware of impending price decreases. Thus, this model
is intended to capture situations in which customers place
a high value on a good’s availability, and tend to buy it as
soon as their budget constraint (i.e., reservation price) is
met. We can alternatively model a situation in which cus-
tomers are aware of the pricing pattern. In this case, they
enter the system and stay for at most K periods, and actu-
ally make a purchase when their discounted utility is maxi-
mized. We model utility as the difference between modified
price and reservation price, where 2j � 1 is a factor that
we multiply by price in the future to represent the disutility
of waiting j periods. In other words, all of the customers
who arrive at time t and eventually make a purchase will
make their purchase at time t∗, where

t∗ = argmin
t�l�t+K

2�l−t�pl�

Thus, the revenue from demand in period t is

pt∗�d
0
t − st2�t∗−t�pt∗��

We let d̃
j
i represent the demand from customers that

arrive in period i if they make their purchase j periods
in the future, and let y

j
t be a binary variable that takes

on the value of one if the utility from making a purchase
j periods in the future is the maximum utility over periods
t� t + 1� t + 2� � � � �min�t +K�T �. Then, this model can be
expressed as described below. Once again, we consider a
discrete-time multiperiod production system where at each
period we decide both price of the product, pt , and the pro-
duction quantity of the product, xt . As before, our objective
is to maximize the net profit (25a) subject to inventory
balance (25b), production capacity (25c), and demand real-
ization constraints (25e)–(25i):

max
pt�xt �It �dt �d̃

j
t

T∑
t=1

min�K�T− t�∑
j=0

pt+jy
j
t d̃

j
t −

T∑
t=1

ctxt −
T∑

t=1
htIt (25a)

s.t. xt + It−1 = dt + It�

t = 1�2� � � � � T � to = 0� (25b)

xt �Qt� t = 1�2� � � � � T � (25c)

dt =
min�K�T−t�∑

j=0
d̃

j
t−j � t = 1�2� � � � � T � (25d)

d̃j
t = d0t − st2jpt+j + �1− yj

t � ·M
t = 1�2� � � � � T �

j = 0�1�2� � � � �min�K�T − t�� (25e)

pt � d0t /st� t = 1�2� � � � � T � (25f)

d̃j
t � yj

t ·d0t � t = 1�2� � � � � T �

j = 0�1�2� � � � �min�K�T − t�� (25g)

min�K�T−t�∑
j=1

yj
t = 1� t = 1�2� � � � � T � (25h)

yj
t ∈ �0�1�� t = 1�2� � � � � T �

j = 0�1�2� � � � �min�K�T − t�� (25i)

xt� It� dt� pt � 0� t = 1�2� � � � � T � (25j)

d̃j
t � 0� t = 1�2� � � � � T �

j = 0�1�2� � � � �min�K�T − t�� (25k)

Note that constraints (25e)–(25i) ensure that yi
j takes the

appropriate value and that M is a large constant.
Gümüş (2007) develops properties of this model, and

an optimal (exponential) algorithm that is similar to the
algorithms we have developed for our original model in
this paper. However, we observe here that the uncapacitated
version of this model with stationary parameters is much
simpler to analyze than the equivalent formulation of the
original model. Because all newly arriving demand that is
met before customers exit the system is met in the same
period, a simple contradiction-based argument can be used
to prove the following result:

Theorem 4. For the pricing-aware customer model with
unlimited capacity and stationary parameters, each
period’s price will be identical and equal to the noninter-
action price,

p∗ = d0+ sc

2s
� (26)

Interestingly, although Theorem 4 applies in a more
general setting than Theorem 2, Theorems 2 and 4 can
conceptually be interpreted as supporting the use of two
very different retail pricing strategies. When customers
place a high value on a good’s availability and tend to
buy it as soon as their budget constraint is met, relatively
frequent sales can serve to maximize profits, as indicated
by Theorem 2. This strategy tends to be employed, for
example, by high-end department stores, whose customers
may place a high value on the good’s availability. Discount
stores such as Wal-Mart, however, may employ everyday
low-price strategies because their customers are more ade-
quately modeled by the model introduced in this section—
they are willing to wait for the lowest possible price.

7.2. Conclusions and Future Research

In this paper, we have demonstrated that it can be valuable
to model demand interactions in production/pricing mod-
els, and we presented several possible ways to model this
interaction. We have presented structure, algorithms, and
heuristics for our models. Our computational analysis helps
to characterize the value of accounting for demand inter-
action when making pricing and production decisions in
various cost and capacity settings.
Our models have a variety of limitations. These are deter-

ministic models, although actual problems will typically be
stochastic. In addition, while we assume that all customers
in the market follow the pattern of the behavior described
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either in our main model or in the model introduced in the
previous subsection, we believe that most actual markets
have a mixture of customers following the behavior char-
acterized in both models. Nevertheless, we think that the
models and results presented in this paper are a good initial
step toward capturing the impact of demand interaction in
production/pricing models.
Building on our initial framework, we are currently ex-

tending these models in several ways. We are working to
extend more of our 1-period results to the general K-period
case. We are also considering models with fixed setup costs
associated with production orders. Our framework allows
us to easily integrate setup costs into the model. We are
also working to extend our models to a multiproduct setting
where a manufacturer produces more than one product and
demand for each product is a function of its own price and
the prices of other products.
While our model has focused on the problem of a

monopolist, a game-theoretic model where multiple manu-
facturers compete for the same potential demand is worth
investigating. This extension will help us to understand the
effect of dynamic pricing as a tool to achieve competitive
advantage. Finally, we hope to extend our models to the
case of stochastic demand.

8. Electronic Companion
An electronic companion to this paper is available as part
of the online version that can be found at http://or.journal.
informs.org/.

Acknowledgment
This material is based on work supported by the National
Science Foundation under grants DMI-0092854 and DMI-
0200439.

References
Abad, P. L. 1988. Determining optimal selling price and lot size when

the supplier offers all-unit quantity discounts. Decision Sci. 19(3)
622–634.

Abad, P. L. 1996. Optimal pricing and lot-sizing under conditions
of perishability and partial backlogging. Management Sci. 42(8)
1093–1104.

Aviv, Y., A. Pazgal. 2005. Optimal pricing of seasonal products in the
presence of forward-looking customers. Working paper, Olin School
of Business, Washington University, St. Louis, MO.

Bersanko, D., W. Winston. 1990. Optimal price skimming by a monopolist
facing rational customers. Management Sci. 36 555–567.

Bitran, G. R., R. Caldentey. 2003. An overview of pricing models for
revenue management. Manufacturing Service Oper. Management 5
203–229.

Bitran, G. R., S. V. Mondschein. 1997. An application of yield manage-
ment to the hotel industry considering multiple day stays. Oper. Res.
43(3) 427–443.

Chan, L. M. A., D. Simchi-Levi, J. Swann. 2000. Flexible pricing
strategies to improve supply chain performance. Working paper,
Northwestern University, Evanston, IL.

Chan, L. M. A., Z. J. M. Shen, D. Simchi-Levi, J. Swann. 2004. Coordina-
tion of pricing and inventory decisions: A survey and classification.
Handbook of Quantitative Supply Chain Analysis: Modeling in the
E-Business Era, Chapter 9. Springer, New York.

Charnsirisakskul, K., P. Griffin, P. Keskinocak. 2006. Pricing and schedul-
ing decisions with leadtime flexibility. Eur. J. Oper. Res. 171
153–169.

Chen, X., D. Simchi-Levi. 2004a. Coordinating inventory control and pric-
ing strategies with random demand and fixed ordering cost: The finite
horizon case. Oper. Res. 52(6) 887–896.

Chen, X., D. Simchi-Levi. 2004b. Coordinating inventory control and
pricing strategies with random demand and fixed ordering cost: The
infinite horizon case. Math. Oper. Res. 29(3) 698–723.

Cohen, M. A. 1977. Joint pricing and ordering policy for exponentially
decaying inventory with known demand. Naval Res. Logist. Quart.
24 257–268.

Conlisk, J., E. Gerstner, J. Sobel. 1984. Cyclic pricing by a durable goods
monopolist. Quart. J. Econom. 99(3) 489–505.

Deng, S., C. Yano. 2006. Joint production and pricing decisions with setup
costs and capacity constraints. Management Sci. 52(5) 741–756.

Eliashberg, J., R. Steinberg. 1993. Marketing-production joint decision-
making. Handbooks in Operations Research and Management Sci-
ence: Marketing, Vol. 5, Chapter 18. North-Holland, Amsterdam, The
Netherlands, 827–880.

Elmaghraby, W., P. Keskinocak. 2003. Dynamic pricing in the presence
of inventory considerations: Research overview, current practices and
future directions. Management Sci. 49(10) 1287–1309.

Elmaghraby, W., A. Gulcu, P. Keskinocak. 2006. Optimal preannounced
markdowns in the presence of rational customers with multi-unit
demands. Manufacturing Service Oper. Management. Forthcoming.

Federgruen, A., H. Groenevelt. 1986. The greedy procedure for resource
allocation problems: Necessary and sufficient conditions for optimal-
ity. Oper. Res. 34(6) 909–918.

Federgruen, A., A. Heching. 1999. Combined pricing and inventory con-
trol under uncertainty. Oper. Res. 47(3) 454–475.

Feichtinger, G., R. Hartl. 1985. Optimal pricing and production in an
inventory model. Oper. Res. 19 45–56.

Fibich, G., A. Gavious, O. Lowengart. 2003. Explicit solutions of opti-
mization models and differential games with nonsmooth (asymmet-
ric) reference-price effect. Oper. Res. 51(5) 721–734.

Florian, M., M. Klein. 1971. Deterministic production planning with con-
cave cost and capacity constraints. Management Sci. 18(1) 12–20.

Gallego, G., G. J. van Ryzin. 1994. Optimal dynamic pricing of inventories
with stochastic demand over finite horizons. Management Sci. 40(8)
999–1020.

Gallego, G., G. J. van Ryzin. 1997. A multiproduct dynamic pricing prob-
lem and its applications to network yield management. Oper. Res.
45(1) 24–41.

Gilbert, S. M. 1999. Coordination of pricing and multi-period production
for constant priced goods. Eur. J. Oper. Res. 114(2) 330–337.
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