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Abstract We address a scheduling and routing problem faced by a third-party lo-
gistics provider in planning its day-of-week delivery schedule and routes
for a set of existing and/or prospective customers who need to make
shipments to their customers (whom we call “end-customers”). The goal
is to minimize the total cost of transportation and inventory while satis-
fying a customer service requirement that stipulates a minimum number
of visits to each customer each week and satisfaction of time-varying
demand at the end-customers. Explicit constraints on the minimum
number of visits to each customer each week give rise to interdepen-
dencies that result in a dimension of problem difficulty not commonly
found in models in the literature. Our model includes two other realis-
tic factors that the third-party logistics provider needs to consider: the
cost of holding inventory borne by end-customers if deliveries are not
made “just-in-time” and the possibility of multiple vehicle visits to an
end-customer in the same period (day).
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We develop a solution procedure based on Lagrangian relaxation in
which the particular form of the relaxation provides strong bounds. One
of the subproblems that arises from the relaxation serves to integrate the
impact of the timing of deliveries to the various end-customers with in-
ventory decisions, which not only contributes to the strong lower bound
that the relaxation provides, but also yields a mathematical structure
with some unusual characteristics; we develop an optimal polynomial-
time solution procedure for this subproblem. We also consider two vari-
ants of the original problem with more restrictive assumptions that are
usually imposed implicitly in many vehicle routing problems. Compu-
tational results indicate that the Lagrangian procedure performs well
for both the original problem and the variants. In many realistic cases,
the imposition of the additional restrictive assumptions does not sig-
nificantly affect the quality of the solutions but substantially reduces
computational effort.

Keywords: Third-party logistics; vehicle scheduling; period vehicle rout-
ing problem; inventory routing problem; delivery scheduling

1. Introduction
Our research was motivated by a problem faced by a California-based

third-party logistics (3PL) provider that offers shipping services in the
form of full-truckload (or as-if-full-truckload) moves to its customers.
Most of its customers are manufacturing firms that supply components
to downstream manufacturers or finished goods to distribution centers,
or distribution centers that supply large retail firms. Some of the man-
ufacturing customers use the 3PL to provide transportation to support
vendor-managed inventory (VMI) programs. For clarity, we use the term
customer to refer to a purchaser of 3PL services and end-customer to re-
fer to a customer’s customers. Each customer needs to supply items to its
end-customers to satisfy the end-customers’ daily demands on or before
their respective due dates. The 3PL provider has a contract with each
of its customers to transport these goods, usually with a requirement on
the minimum number of deliveries per week for each end-customer. Typ-
ically, the 3PL provider’s customers would view more frequent delivery
as an element of better customer service. Perhaps more importantly, the
end-customers prefer more frequent deliveries to reduce their inventory
holding costs, and the customers who are involved in VMI programs
directly benefit from reduced inventory at the end-customers (if the cus-
tomers own this inventory, as is common). We explicitly consider these
factors in our model.

In this paper, we address the 3PL provider’s problem of selecting
routes to execute on each day of the week to service its existing and/or
prospective customers. We consider the problem from the viewpoint
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of the 3PL provider, who is seeking a cost-efficient solution while sat-
isfying customer service requirements that stipulate conditions such as
frequency of delivery. Although the solution of this problem can be used
for operational purposes, the 3PL management initially approached us
seeking to estimate the cost of servicing a prospective customer in the
context of preparing bids and/or negotiating the terms of a contract.

It is important to emphasize that the focus of this paper is on route
selection and delivery quantity decisions, and not on the construction
of candidate routes, because a typical 3PL provider has little difficulty
generating a set of viable routes, taking into account the structure of
the road network, traffic patterns, etc. Our primary concern is to find
an effective solution procedure for our problem given a practical set of
candidate routes.

The remainder of this paper is organized as follows. In the next sec-
tion, we describe our problem in more detail and present a mathematical
formulation. Section 3 contains a review of the related research litera-
ture. In Section 4, we discuss two restricted variants of our problem, and
in Section 5, we present our proposed solution approach for the original
problem and the two variants. Computational results are reported in
Section 6, and Section 7 concludes the paper.

2. Model Description
Our research was motivated by a 3PL provider which, for reasons of

material handling efficiency, usually requires its customers to palletize
the goods to be shipped. For this reason and for ease of exposition,
we assume that the volume of goods can be expressed in terms of a
homogeneous unit, such as a standard pallet. In the formulation that
follows, we assume that all customers use the same standard unit, but we
only require that each customer’s basic unit of shipment be sufficiently
standardized that we do not have to address the “bin-packing” aspect
of the truck loading problem.

We assume that the 3PL provider owns, leases, or otherwise controls a
fleet of trucks and that the trucks are homogeneous. We also assume that
the 3PL provider has sufficient trucks to service the selected routes. 3PL
firms often have standing arrangements for rental vehicles when needed,
and additional drivers are available except in unusual circumstances.
Thus, although limitations due to the number of vehicles or drivers may
exist, they do not play a major role in a 3PL provider’s route planning
decisions. When using our procedure to estimate the cost of servicing a
new customer, the 3PL provider recognizes that additional vehicles may
be needed, and generally would not want to constrain the number of
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vehicles a priori. In the concluding section, we explain how our approach
can be generalized to accommodate non-homogeneous vehicles and the
cost of rental trucks when required.

Our problem framework has many customers and many end-customers.
To distinguish among origin-destination pairs, we use the term job type
to refer to the movement of goods from a single customer location to
a single end-customer location. Each “route” in our problem consists
of a sequence of jobs types. To service a job type, a truck must arrive
empty at a customer, pick up its goods, and deliver all of these goods
to an end-customer. Thus, routes consist of (customer, end-customer,
customer, end-customer,...) sequences, where for every customer, the
end-customer is known. There are a number of reasons for assuming
that routes have this structure. The first reason is that the transport
capacity is sold to customers in full-truckload (or as-if-full-truckload)
increments, and the vast majority of customers specify the minimum
number of visits per week such that the transport capacity is reason-
ably well utilized (over 50% on the average). Second, many of the parts
being transported are valuable and at risk of theft, so customers may
require that the truck be sealed in transit or that the truck proceed di-
rectly to the end-customer. One example of such a part is a compact
disc (CD) containing software. The manufacturing cost of the CD is
negligible, but the significantly higher retail price makes it a target for
thieves. Third, when using our model to estimate the cost of servicing
a prospective customer, the 3PL provider may not be able to estimate
in advance the opportunities for consolidation of loads that would facili-
tate the construction of appropriate candidate routes. This is especially
true because our approach determines the shipment quantities rather
than taking them as given. In the concluding section, we discuss how
one can make heuristic adjustments to take advantage of consolidation
opportunities ex post.

We emphasize that our motivating application precludes the need for
focusing on the classical routing problem. The number of possible routes
is severely constrained by geographical and practical considerations. For
example, due to driver workday restrictions and the time required to load
and unload goods, it is unlikely that a route would contain more than
four or five (customer, end-customer) pairs. Thus, the 3PL provider
can easily enumerate and determine the cost of all practical routes, and
use these costs to select the best route containing any given subset of
(customer, end-customer) pairs.

Under mild conditions, namely (i) if route costs are linear in distance
(or time), (ii) the triangle inequality for driving distance (alternatively,
time) holds, and (iii) the 3PL provider’s objective is to minimize total
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route cost, it is optimal to service each job type as few days per week as
possible (i.e., one day per week if the total weekly shipment quantity is
less than or equal to one truckload, or the minimum number of trucks
required to transport the load otherwise). Without additional economic
incentives, the selected schedule will contain the minimal number of
shipments for each customer. In order to lower their inventory holding
costs, the end-customers desire as many shipments as possible. Indeed,
they may desire just-in-time delivery of their daily demands. Thus, the
customers may be willing to pay more to provide more frequent ser-
vice for their end-customers. As a proxy for the customers’ willingness
to pay, we include the cost of holding inventory at the end-customer.
Thus, we implicitly assume that end-customers are willing to reward
customers for decreased holding costs, and that customers in turn are
willing to reward the logistics provider. Alternatively, if the customer
is providing VMI services and owns the inventory at the end-customer,
the customer benefits directly from reduced inventory levels. We also
impose a lower bound on the number of delivery days for each job type.
Both the inventory holding costs and the lower bounds on delivery days
encourage better service (i.e., smaller, more frequent deliveries). The
goal is to choose the routes to execute each day (and thus implicitly
the job types to service) and the delivery quantity for each job type
to minimize the sum of route costs and inventory holding costs over a
horizon of T periods. In doing so, we must meet demands on time at
the end-customers and satisfy a lower bound on the number of delivery
days for each end-customer. Of course, some of these decisions may be
fixed in advance to represent the unchangeable portion of the existing
schedule. A formulation follows.

Indices:

j: job type (specifies (customer, end-customer) pair)

r: truck route (specifies a sequence of stops)

t: time (day of week), t = 1, ..., T

Data:

cr: total cost for executing route r

Djt: demand of job type j on day t, expressed in standard units
(e.g., pallets)

hj : one-period inventory holding cost for one unit of demand for
job type j
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bj : minimum number of days of service for job type j

αjr: 1 if route r includes job type j; 0 otherwise

CAP: capacity of a vehicle in standard units (e.g., pallets)

Decision Variables:

zrt: number of times route r is executed on day t

xjt: number of units of job type j shipped on day t

vjt: number of vehicles servicing job type j on day t =
∑

r αjrzrt

yjt: 1 if there is one or more delivery of job type j on day t; 0
otherwise (implicit decision)

Ijt: inventory of job type j remaining at the end-customer at the
end of period t (implicit decision)

(P)

minimize
∑

r

∑
t

crzrt +
∑

j

∑
t

hjIjt

s.t.
∑
t

yjt ≥ bj ∀j (3.1)

yjt ≤ vjt ∀j, t (3.2)
vjt ≤

∑
r

αjrzrt ∀j, t (3.3)

Ijt = Ij,t−1 + xjt −Djt ∀j, t (3.4)
xjt ≤ CAP ∗ vjt ∀j, t (3.5)

yjt binary ∀j, t
zrt, vjt non-negative integers ∀j, r, t

xjt, Ijt non-negative ∀j, t
The first set of constraints ensures that each job type receives its min-

imum required days of service (or more). Without these constraints, a
job type’s “frequency of service” requirements may not be met, particu-
larly if the end-customer’s demands and holding costs are low, and the
incremental cost of servicing the job type is high. The incremental cost
of servicing a job type is high if the end-customer and/or the correspond-
ing shipment origin is located far from the truck depot and/or from the
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other customers and end-customers. The second set of constraints en-
sures that a service day is credited only if the number of truck visits (for
that job type) is one or greater. The third set of constraints defines the
vjt variables, and the fourth set of constraints represents the inventory
balance equations, which preclude shortages. The fifth set of constraints
limits the shipment quantity to the corresponding shipment capacity.
Observe that constraints (3.3) are expressed as inequalities rather than
equalities. Due to the structure of constraint sets (3.1), (3.2) and (3.3), it
is optimal for the vjt values to be as large as possible; thus, constraints
(3.3) are always satisfied as equalities. The inequality representation
aids in our solution procedure, as we explain in more detail later.

The formulation above addresses the problem for a finite horizon.
At the 3PL provider that motivated our work, the plan is expected to
repeat periodically, usually weekly. For this reason, it is not essential
for the system to start and end the week with zero inventory. We do
require, however, that the plan be repeatable, and we therefore impose
the constraints:

IjT = Ij0 ∀j. (3.6)

Of course, the model above does not explicitly represent all the pos-
sible complexities of real world problems. It can, however, be modified
to capture at least some of these complexities, including:
• multiple truck types (the formulation is for a single truck type);
• constraints on the number of routes or the number of truck-hours

available in a day (unconstrained here);
• delivery time constraints (unconstrained here; such constraints can

be considered easily in the generation of routes);
• multi-day routes (single-day routes assumed here); and
• time-varying route and inventory holding costs (assumed time-invari-

ant here).
Also, recall that we are addressing a problem in which each route

consists of a series of one or more (pick-up, drop-off) operations, which
reflects the usual mode of operation at the 3PL provider that motivated
our research. Figure 3.1 shows an example of an allowable route. As
a consequence of this assumption, truck capacity limits apply only to
a single delivery. Of course, for some applications, goods from two or
more job types may be loaded onto a truck simultaneously. Modifying
our model to accommodate this problem variant would significantly in-
crease the complexity of the model. (We discuss this issue further in the
concluding section.)
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customer 1

end−
customer 1

customer 2

end−
customer 2

customer 3

end−
customer 3

customer 4

end−
customer 4

DEPOT

Figure 3.1. Depiction of an example route.

3. Literature Review
Our problem involves selecting routes for each day of the week and

determining shipment quantities for each customer (within the capacity
constraints defined by the selected routes) to satisfy demands that may
vary by period. The latter decisions are similar to lot sizing decisions.
The long history of research on deterministic single-stage, single-item
lot sizing models begins with the seminal work of Wagner and Whitin
(1958) for the uncapacitated model. Aggarwal and Park (1990), Feder-
gruen and Tzur (1991), and Wagelmans et al. (1992) developed faster
exact algorithms for the uncapacitated case. For the capacitated prob-
lem, Florian and Klein (1971) characterized the optimal solution for the
case of constant capacity. Baker et al. (1978) developed algorithms for
the case of time-varying capacity, and Love (1973) characterized optimal
solutions when production and storage costs have a piecewise concave
structure. Lippman (1969) analyzed the multiple setup cost case, where
there is a fixed charge for each increment of capacity (such as one truck-
load). We discuss his results in more detail in Section 5.

Although we do not explicitly solve the routing problem, our problem
contains features of both the Period Vehicle Routing Problem (PVRP)
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and the Inventory Routing Problem (IRP). The PVRP is a multi-period
vehicle routing problem in which the decisions are the service day(s)
for each customer and the vehicle routes for a service provider on each
day. Very few PVRPs in the literature consider inventory or other costs
associated with the selection of a particular day-of-week schedule. The
emphasis is on minimizing routing costs and/or the number of required
vehicles. The most common assumptions are that the number of visits
during the horizon is fixed and that the delivery or pick-up quantity is
the same for each visit. A few authors do allow for different numbers of
visits and/or different delivery quantities. Russell and Gribbin (1991)
allow an arbitrary allocation of the week’s goods among a specified num-
ber of deliveries for each customer. Gaudioso and Paletta (1992) assume
constant demand and equal delivery quantities, and impose spacing con-
straints between deliveries, without accounting for the cost of holding
the inventory required to support such a delivery pattern while avoiding
shortages. Similarly, Chao et al. (1995) explicitly account for the effect
of time-varying demand and the delivery patterns on the quantities to
be delivered, but do not consider inventory holding costs.

In contrast to the PVRP, IRPs more strongly emphasize the tradeoff
between delivery and inventory-related costs. Typical objective func-
tions include vehicle routing costs, inventory holding costs, and shortage
costs. For articles on continuous-time problems with constant demand,
see Dror and Trudeau (1996), Herer and Roundy (1997), Federgruen
and Van Ryzin (1997), Viswanathan and Mathur (1997) and Chan et al.
(1998), and references therein. For single-period problems with stochas-
tic demands, see Federgruen and Zipkin (1984) and Federgruen et al.
(1986). For multi-period problems with stochastic demands see Webb
and Larson (1995), Herer and Levy (1997) and Bard et al. (1998) and
the references therein. Finally, for continuous-time problems with sto-
chastic demand, see Larson (1988), Dror and Trudeau (1996), and Qu et
al. (1999). It should be noted that the vast majority of the multi-period
problems and continuous time problems with stochastic demand assume
that demand is stationary.

Several IRP papers address problems that are closely related to ours.
Chien et al. (1989) consider a single-period model with deterministic de-
mand in which the supplier has a limited quantity of the product, and
the goal is to maximize revenue less transportation and shortage costs
subject to supply and demand availability, and vehicle capacity con-
straints. Our problem is essentially a multi-period generalization of the
Chien et al. model with additional costs for inventory and constraints
on the delivery patterns. Dror and Levy (1986) consider a multi-period
model in which the demand is constant but the required shipment quan-
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tity depends on the delivery day, and each customer is serviced no more
than once during the time horizon. Bell et al. (1983) develop a model to
minimize the cost of distributing industrial gases considering the fore-
casted inventory levels of the customers. Dror et al. (1985) study a
finite-horizon problem in which each customer receives at most one de-
livery during the horizon and deliveries must occur before the customer
is projected to deplete his supply. Dror and Levy (1986), and Dror
and Trudeau (1996) consider generalizations and additional solution ap-
proaches for these models. Chandra (1993) addresses the joint problem
of warehouse procurement decisions and delivery (routing) to retailers
for multiple products over a finite horizon, and develops a heuristic for
the problem. Chandra and Fisher (1994) examine a similar problem in
which a production schedule, rather than a procurement schedule, must
be decided. Metters (1996) examines the problem of coordinating deliv-
ery and sortation of mail when there are deadlines for the completion of
sortation, and solves the problem using commercial optimization soft-
ware. Carter et al. (1996) consider the problem of planning the delivery
of multiple grocery items during multiple periods over a finite, repeating
horizon. A delivery pattern must be selected for each customer, and
inventory allocations and vehicle routes must be chosen on each day.
Vehicle capacity, vehicle availability, route duration and delivery time
window restrictions apply. They develop a heuristic procedure for solv-
ing this problem. As the size of the fleet is an important constraint in
their motivating application, their procedure emphasizes smoothing ve-
hicle use. A variant of our problem without constraints on the number
of service days per week and with deliveries only (i.e., no intermediate
stops for pickups) is addressed by Lee et al. (2003), who construct an-
nealing heuristics and derive certain properties of the optimal solution
for their problem.

In contrast to the vast majority of PVRP models, our model specifi-
cally accounts for effects of different delivery patterns on the inventory
that must be held by the end-customer. In contrast to many IRP models,
our model directly addresses a multi-period problem with time-varying
demand that may need to be satisfied by more than one shipment during
the horizon. Equally important is that our formulation of the problem
permits an exact representation of route costs (versus a fixed cost per
delivery, cf. Carter et al.), an exact representation of inventory costs
incurred by the end-customer as a consequence of the delivery schedule,
as well as constraints on the number of deliveries per week for each job
type.

None of the articles cited above accounts for all of the factors and con-
straints that we consider. For this much more general and accurate rep-
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resentation of real-world, multi-period shipment problems involving both
pickup and delivery with days-of-service constraints that 3PL providers
are facing, our major contribution is developing an approach that pro-
duces near-optimal solutions relatively quickly.

It is important to highlight the complications introduced by the min-
imum days-of-service constraints. Our problem exhibits strong links
across multiple periods, not only because of the inventory costs induced
by the day-of-week delivery pattern for an individual customer, but be-
cause the incremental cost of servicing a customer and the difficulty of
satisfying that customer’s days-of-service constraint depend upon the
delivery patterns of the other customers. Although the economic inter-
actions noted above arise in the IRP and some versions of the PVRP,
in those contexts, they tend to induce “soft” constraints that can of-
ten be negotiated via earlier shipments (and the associated inventory
costs). On the other hand, the “hard” days-of-service constraints in our
problem create structural linkages that cause the (general) integral route
selection decisions to play a stronger role in the solution of our problem.

4. Problem Variants
In addition to (P) formulated in Section 2, we examine two restricted

versions that may be applicable in many problem environments. These
restricted problems are not only realistic but can be solved using the
same solution framework as that described in the next section and with
less computational effort. As our discussion proceeds, we will explain
why the problems are easier to solve. Here, we present the motivation
for the restrictions and the related changes in the problem formulations.

Variant 1:
In the first problem variant, we impose the constraint that each job

type receives at most one visit per day. In this case, at most a partial
truckload could be shipped ahead of schedule on a given day. Such a
constraint would be imposed in practice if the customer insists on a
low-inventory, almost-just-in-time solution.

The formulation changes as follows:
• The zrt and vjt variables are now binary.
• The yjt variables are now equivalent to the vjt variables and can be
removed from the formulation by substituting vjt wherever yjt appears
and removing redundant constraints (e.g., (3.2)).
• We add the constraint

∑
r

αjrzrt ≤ 1 ∀j, t.
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If the demand on a single day exceeds one truckload, then the job type
can be replaced by multiple (“dummy”) job types with the same physical
origin and destination, where each of these job types has demand of up
to one truckload per day. (Of course, it is most economical to subdivide
the goods into as few truckloads as possible.) In this case, for each job
type j whose demand exceeds a truckload on day t, we define Jjt as the
set of corresponding “dummy” job types and rewrite the constraint that
defines visits as:

yjt ≤
∑

i∈Jjt

∑
r

airzrt

Although this constraint has a different form than the constraints in
the original formulation, it has the same structure as certain constraints
in the formulation on which our solution procedure is based. Conse-
quently, we can easily handle demands exceeding a truckload for any job
type on any day.

Variant 2:
The second problem variant does not restrict the number of visits for

each job type; it simply permits us to execute each route at most once on
each day. The motivation for this constraint is the very small likelihood
of needing, much less choosing, the same route more than once on the
same day. Such a need would arise only if several job types that could
comprise a relatively efficient route could all benefit from receiving more
than one truckload of good on the same day.

The only required change in the formulation is to make the zrt vari-
ables binary.

5. Solution Approach
The set partitioning problem, an NP-hard problem (Garfinkel and

Nemhauser 1969), is a special case of (P), which implies that (P) is NP-
hard. To see this, consider the special case of our problem in which
inventory costs are ignored and inventory non-negativity constraints are
not enforced except at the end of the horizon. In this case, it is optimal
to service each job type with as few vehicles as possible, and without
regard to the day of the week, so each “week” can be regarded as a
single time period. Each job type requiring more than one truckload in
a week is replaced by an appropriate number of “dummy” jobs, in the
same way as in Variant 1. The zrt become binary rather than general
integer variables. The routes are defined for the set of “dummy” job
types and the ajr values are defined accordingly. With these redefinitions
and appropriate simplifications of the objective function and constraints,
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the problem reduces to the set partitioning representation of the single-
period (standard) vehicle routing problem.

The inventory non-negativity constraints and inventory costs link the
periods, thereby creating a problem that is more difficult than a set
partitioning problem. Indeed, as we report in more detail later, even
small instances of (P) are impractical to solve using commercial software.
This necessitates the development of a solution procedure that takes
advantage of the structure of our problem. We first present a solution
approach for the general problem, and then explain how the procedure
should be modified for the two problem variants.

We propose a Lagrangian approach to the problem in which con-
straints (2) are relaxed using multipliers µjt (≥ 0) and constraints (3)
are relaxed using multipliers λjt (≥ 0). Observe that expressing con-
straints (3) as inequalities allows us to dualize them using non-negative
Lagrange multipliers. This, in turn, provides for a more meaningful
interpretation of the λjt values, and, as we observed in preliminary com-
putational studies, a more stable solution procedure.

Because we have relaxed constraints (3.2), the introduction of con-
straints (3.7) and (3.8), shown below, which are redundant in the original
problem, provides a stronger formulation for the Lagrangian procedure.
Constraints (3.7) ensure that a service day is credited only if at least
one appropriate route is selected, while constraints (3.8) ensure that the
total number of truck visits is large enough to satisfy each job type’s
demand.

yjt ≤
∑
r

αjrzrt ∀j, t (3.7)
∑
r

∑
t

αjrzrt ≥ dCAP−1
∑
t

Djte ∀j (3.8)

Relaxing constraints (3.2) and (3.3) and adding constraints (3.7) and
(3.8) yields two subproblems for fixed λjt and µjt values:
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(P1)

minimize
∑

r

∑
t

(cr −
∑

j

λjtαjr)zrt +
∑

j

∑
t

µjtyjt

s.t.
∑
t

yjt ≥ bj ∀j
yjt ≤

∑
r

αjrzrt ∀j, t
∑
r

∑
t

αjrzrt ≥ dCAP−1
∑
t

Djte ∀j
yjt binary ∀j, t

zrt non-negative integers ∀r, t
and (P2)

minimize
∑

j

∑
t

hjIjt +
∑

j

∑
t

(λjt − µjt)vjt

s.t.

Ijt = Ij,t−1 + xjt −Djt ∀j, t
xjt ≤ CAP ∗ vjt ∀j, t

vjt non-negative integers ∀j, t
xjt, Ijt non-negative ∀j, t

Subproblem (P1), the routing subproblem, is a variant of the PVRP
with lower bounds on the number of service days and on the number of
truck visits over the horizon for each job type. In the objective function,
there is an adjusted cost for each route that accounts for the value of that
route’s shipping capacity in meeting the needs of customers on that route
on that day, as well as additional “costs” corresponding to satisfying
the service-day requirements of the customers. The “standard” PVRP
includes only terms containing the zrt variables, and consequently, is
much simpler. Problem (P1) is NP-hard for the same reasons as (P),
via the same reduction.

Observe that without the added valid inequalities (3.7) and (3.8), the
optimal solution to (P1) would be to identify, for each j, the bj smallest
values of µjt and to set the corresponding values of yjt to 1 (otherwise
set yjt to zero) and to set zrt to 1 if its coefficient (reduced cost) in
the objective function is negative (otherwise set zrt to zero). Such a
solution does not ensure consistency between the selected routes and the
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days of service, and provides no guarantee that the number of routes
is sufficient to handle each job type’s weekly demand. Consequently,
the “solution” is far from being feasible and its cost is a very loose
bound on the actual cost. The inclusion of constraints (3.7) and (3.8)
provides substantially better bounds, primarily because the resultant
routing solution is feasible: the constraints on number of service days
are satisfied and there are sufficient routes to accommodate the required
freight flows.

Subproblem (P2), the shipment scheduling subproblem, is a capaci-
tated lot sizing problem with multiple setup costs, one for each capaci-
tated vehicle. Because it is a subproblem in a relaxation with a form that
allows some of the (adjusted) setup costs to be negative, when viewed as
a stand-alone problem, (P2) could have an unbounded objective. How-
ever, in our problem context, despite these negative setup costs, we must
devise a method that provides a strong bound in order to solve the orig-
inal problem. It is from this vantage point that we analyze (P2) and
develop an optimal polynomial-time solution procedure for it.

5.1 Analysis of (P2)
The second subproblem is separable by job type. Thus, in the re-

mainder of this section, we consider the problem for a single job type
and omit the job type subscript. Lippman (1969) studies a class of mul-
tiple setup cost problems that includes ours as a special case. He shows
that there exists an optimal solution consisting of regeneration intervals.
(A regeneration interval is a set of consecutive periods with zero initial
and terminal inventory and with all intermediate periods having posi-
tive inventory.) Thus, the strategy is to find the optimal solution for
each potential regeneration interval, then to find the best combination
of regeneration intervals using a shortest path algorithm.

Lippman also shows that there exists an optimal solution such that:

It−1(xt mod CAP ) = 0.

In other words, in each period, either entering inventory is zero or the
shipment quantity is a multiple of a full truckload (or both). Although
not explicitly stated in his paper, a further implication of this result
is that within a regeneration interval, only the first period can have a
partial-truckload shipment, as all of the remaining periods must have
It−1 > 0. As such, if all trucks have the same capacity (as in our
problem), we know exactly how many vehicles are sent within the re-
generation interval.

Lippman’s result is based on the assumption that the setup costs are
non-negative, and his result characterizes the shipment quantities but
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does not explicitly state how many trucks should be sent. Of course,
when setup costs are positive, it is optimal to send as few trucks as
possible to accommodate the shipment quantity in each period. Lee
(1989) and Anily and Tzur (2002), among others, have studied variants
of this lot-sizing problem in which multiple capacitated shipments (of
arbitrary quantities) are allowed in each period, but all of these models
have the implicit assumption of positive setup costs. Pochet and Wolsey
(1993) study the special (restrictive) case in which the batch size must
be some integer multiple of some basic batch size, but they, too, assume
that setup costs must be positive.

Our second subproblem has the unusual and distinctive characteristic
that some of the (adjusted) setup costs may be negative, and it is this
characteristic that necessitates a different solution approach. The ap-
proaches in the literature cannot be applied directly to our problem be-
cause they do not allow for the combination of negative and time-varying
setup costs. Both of these aspects arise in our second subproblem.

In our problem, it may be optimal to send extra trucks, including
some that are completely empty. To avoid an unbounded solution, we
impose the constraint

vt ≤ d∑t Dt/CAP e, ∀t

which simply limits the number of trucks in any period to the number
that would be required to service all of the demand in a single period.
Let v̄ = d∑t Dt/CAP e. (We later obtain stronger bounds on v, but
for the purposes of our present analysis, this particular upper bound is
useful.) It is clear that v∗t = v̄ for periods in which the corresponding
coefficients are negative. The problem is now to determine how to use
this “free capacity” and how to make shipments in the remaining peri-
ods. We show that this modified problem (with constraints on vt) has
the same property as that derived by Lippman. We then show how to
construct an optimal solution (both the truck schedule and the shipment
quantities) for this problem. For ease of exposition, let Kt denote the
coefficient associated with vt.

Proposition 1: For a setup cost structure of the form Ktvt where some
of the Kt values may be negative, the optimal solution satisfies:

It−1(xt mod CAP ) = 0.

Proof: Suppose, to the contrary, that we have an optimal solution, x∗t ,
in which It−1 > 0 and x∗t mod CAP > 0. The latter condition implies
there is excess transportation capacity in period t. There exists some
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ε = min{CAP − (x∗t mod CAP ), It−1} > 0 such that we can ship,
in period t, ε units that had been shipped in some prior period, at a
minimum savings of hε. This contradicts the optimality of the original
solution. 2

Observe that the possibility of trucks being sent empty does not
change the implication of Proposition 1 with respect to the timing of a
partially-filled truck. Thus, only the first period in a regeneration inter-
val can have a partial truck shipment. The complication in our problem
is that we do not know in advance how many trucks will be sent in a re-
generation interval. However, we do know how many non-empty trucks
will be sent.

Consider a solution for a regeneration interval consisting of periods a
through b, constructed as follows:

Algorithm A2:

Step 1. For t = a, ..., b, set

xt =
b∑

k=a

Dk − CAP b(
b∑

k=t+1

Dk/CAP )c −
t−1∑
k=a

xk

Step 2. For t = a + 1, ..., b,
n∗ = arg maxa≤n≤t{Kt − CAP ∗ h ∗ (t− n)−Kn}
S = maxa≤n<t{Kt − CAP ∗ h ∗ (t− n)−Kn}
If S > 0

set xn∗ = xn∗ + xt

set xt = 0

Step 3. For t = a, ..., b, set
vt = dxt/CAP e

Step 4. For t = a, ..., b,
if Kt < 0 and vt < v̄, set vt = v̄.

In Step 1, the shipment quantity is set so that the fractional truckload
is shipped in the first period and beyond this, just enough full truckloads
are shipped in each period so that demand is satisfied on time. This
tentative solution can be viewed as the schedule that is as close to just-
in-time as possible while retaining properties of the optimal solution.

In Step 2, we determine, for each period, the best earlier period into
which we could shift full truckloads. If the savings is positive, we shift all
relevant truckloads. In Step 3, we set the truck variable vt equal to the
minimum number of trucks necessary to ship the quantity xt. Finally, in
Step 4, we identify periods with Kt < 0 in which the maximum number
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of trucks is not yet assigned, and set the corresponding vt values to
their upper bounds. Note that Steps 2, 3, and 4 retain properties of the
optimal solution.

Proposition 2: Algorithm A2 produces an optimal solution (x∗t and
v∗t ) for a given regeneration interval.

Proof: We first note that by Proposition 1, in some optimal solution
for the regeneration interval, all shipments except possibly that in the
first period of the interval are integer multiples of truck capacity. In this
proof, we restrict our attention to schedules for which the property in
Proposition 1 holds. Thus, Step 1 of the algorithm assigns shipments
so that the minimum number of non-empty trucks, and indeed, the only
possible number of non-empty trucks under the property in Proposition
1, are scheduled. Moreover, the schedule constructed in Step 1 is such
that each full truckload is scheduled as late as possible. Thus, the only
feasible changes entail moving full truckloads to earlier periods. Recall
that the maximum number of trucks in each period (v̄) is sufficient to
ship the entire demand during the regeneration interval. Thus, for any
moves of full truckloads to earlier periods, we can consider the best time
to dispatch each individual non-empty truckload independently. Now,
by construction of the algorithm, we cannot move an entire truckload
from one period to another while reducing costs (cf. Step 2). Had it been
possible to reduce costs by removing a truck with Kt > 0 and shifting the
load into a period with Kt ≤ 0, that shift would have been implemented
in Step 2. Furthermore, by Step 4 of the algorithm, we cannot reduce
the total cost by adding empty trucks to the solution. Thus, Algorithm
A2 produces an optimal solution for the regeneration interval. 2

We note that regeneration intervals can be considered independently.
Thus, the optimal solution for each possible regeneration interval can be
determined using this algorithm, and a shortest path algorithm can be
used to select the optimal set of regeneration intervals.

Observe that Steps 1, 3 and 4 have linear time complexity and Step 2
has O(T 2) complexity. Thus the computation of the costs for the O(T 2)
regeneration intervals has O(T 4) complexity. The shortest path prob-
lem (to find the best combination of regeneration intervals) has O(T 2)
complexity. Consequently, the overall procedure has O(T 4) complexity.
Observe, however, that the computations and comparisons are extremely
simple.

We note that for any time interval that could be covered by a sin-
gle regeneration interval, there may be an alternate dominant solution
consisting of a set of shorter regeneration intervals. Such dominant so-
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lutions are identified by the shortest path procedure. Thus, it is only
necessary for our procedure to find an optimal solution that satisfies the
regeneration interval property for the time interval under consideration.
Among all such optimal solutions, we restrict our search to those satisfy-
ing an established property of the optimal solution within a regeneration
interval. By doing so, we are able to construct a very efficient solution
procedure for (P2).

Because of its structure, (P2) is easy to solve and produces a much
stronger bound than its LP relaxation, and thereby provides a significant
contribution to strengthening the overall lower bound. In addition, as
we will see later, including the fixed charge costs (via the dual variables)
and the vehicle capacity constraints in this subproblem also provides
relatively fast convergence of the Lagrangian procedure because the so-
lutions of (P1) and (P2) are more consistent than they would be without
these considerations in (P2).

5.2 Solution Procedure for (P)
Recall that in order to solve (P), we propose a Lagrangian approach

in which we relax two sets of constraints – those ensuring that each ser-
vice day is correctly accounted for, and those defining the vjt variables.
Correspondingly, we associate a set of multipliers with each set of re-
laxed constraints. We employ variants of the subgradient optimization
method to update the multipliers at each iteration. (See the Appendix
for details.) For each set of multipliers, we first solve (P1) and (P2)
optimally to provide a lower bound, which we update if it has improved.
We then construct a feasible solution by using the z∗rt values from (P1),
computing

vjt =
∑

r

αjrz
∗
rt ∀j, t

and substituting the values of vjt (as fixed quantities) in (P2). We then
solve (P2), which is a linear program when the vjt values are fixed.

We observed that solutions constructed by the method described above
often result in excess truck movements, i.e., the vjt values are larger
than necessary to handle the resulting shipment quantities. Therefore,
we also construct another feasible solution by taking the solution for
(P2) and checking its feasibility with respect to the customer service
constraints. If the solution satisfies these constraints, for each day of
the week, we solve the associated problem (P1). Of course, if the solu-
tion for (P1) exactly satisfies the shipping requirements from (P2), the
solution is optimal and there is no need to re-solve the routing subprob-
lem. Although we could make incremental changes to the routes from
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(P1) (i.e., eliminate excess stops), in exploratory tests, such a method
did not consistently produce good solutions.

We compute the objective value of the feasible solution and update
the upper bound if the newly-constructed solution has a better objective
than the current upper bound. The multipliers are then updated and
the process is repeated until optimality is achieved, or the best feasible
solution is within some tolerance of the lower bound, or until the step size
reaches virtually zero (thereby precluding any significant improvement
in the objective function value).

Because we allow a repeating schedule rather than restricting the so-
lution to one with zero initial and ending inventories, constraints (8),
which are retained in (P1), are sufficient to ensure that the zrt values
from (P1) will yield a feasible solution for (P2). If one is solving a finite
horizon problem, then it may be necessary to impose lower bound con-
straints on

∑t
k=1

∑
r αjrzrk for t = 1, ..., T and for all j to ensure that

the timing of trucks allows for a feasible solution of (P2) with the vjt

values implied by (P1).

5.3 Modification for Problem Variants
Variant 1:

In this case, we only need to impose the tighter of the customer ser-
vice (number of visit days) constraint or the constraint related to total
delivery capacity for each job type j. Noting that there exists an opti-
mal solution such that vjt =

∑
r

αjrzrt, we can eliminate the vjt variables

entirely. With these simplifications, (P1) becomes
(P1′)

minimize
∑

r

∑
t

(cr −
∑

j

λjtαjr)zrt

s.t.
∑
r

∑
t

αjrzrt ≥ max {bj , dCAP−1
∑
t

Djte} ∀j
∑
r

αjrzrt ≤ 1 ∀j, t
zrt binary ∀r, t

The only change in (P2) is that the vjt variables are now binary, so
the problem becomes a lot sizing problem with standard (binary) se-
tups. Recall, however, that because (P2) is derived from a relaxation,
the setup costs may be negative.
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Variant 2:
In this case, the only changes are that the zrt variables are binary.

The same solution procedure can be used, but the constraint space is
much smaller. Next, we discuss ways to further limit the search space.

5.4 Bounding the vjt Values
In this subsection, we describe methods to obtain upper and lower

bounds on the values of vjt and consequently also on
∑
r

αjrzrt for the

original problem and for Variant 2. The upper bounds on
∑
r

αjrzrt also

have obvious implications for the individual zrt values in the general
model where the zrt values may be greater than 1. These bounds and
their derivations are intuitive and we state them without proof.

Simple Bounds
The simple bounds are based on the observation that for customer j,

service must occur on at least bj days. Thus, the most that one would
ship on a single day is the sum of demands on the T − (bj−1) days with
the greatest demands, as the demands on all of the other days would be
shipped “just-in-time.” This bound may be quite loose, but it is easy to
compute and does not differ by day of week.

Cost-Based Bounds
The cost-based bounds recognize the economic tradeoffs between the

“setup” (transportation) and holding costs. We can derive an upper
bound on the number of times job type j is serviced on day t as fol-
lows: First, we let the setup cost on day t be equal to a lower bound
on the smallest incremental cost of servicing job j, which can be deter-
mined by finding the least expensive way to insert job type j into any
(already-generated) executable route. Then, we let the setup cost for all
other days be equal to an upper bound, for example, that derived from
serving job type j alone. (Note that this route is always feasible.) With
these bounds on setup costs, we solve the associated lot sizing problem
with multiple setups. The number of trucks on day t in the solution of
this problem is a tentative upper bound on vjt =

∑
r αjrzrt. In other

words, we would not service job type j on day t any more times than if
transportation costs were as cheap as possible on day t and as expensive
as possible on the other days. This would be a valid bound if we did
not have a constraint on the number of service days. To account for
this constraint, we note that if the initial upper bound is equal to zero,
it is economically unfavorable to service that job type on that day. To
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incur the minimum penalty while contributing to the days of service, we
would service that job type at most once on that day. Thus, we can,
without loss of optimality, set the upper bound on vjt equal to 1 in this
case.

Similarly, we can find lower bounds on the vjt values by setting the
setup cost on day t equal to an upper bound and the cost on the other
days equal to a lower bound and solving the same lot sizing problem. In
this case, the days-of-service constraint does not necessitate any adjust-
ment.

Other Bounds
Observe that an upper bound on vjt can be used as an upper bound

on all zrt such that αjr = 1. Such bounds may be useful when the upper
bound on vjt is small (e.g., 1) and the corresponding zrt values would
otherwise be constrained only by much larger values obtained from the
simple bounds described above.

The analysis can be taken a step further by noting that another upper
bound on zrt is:

min j {upper bounds on vjt such that αjr = 1}.

In other words, the maximum number of times we would select a route
is the minimum among the upper bounds on vjt for the locations on the
route. Bounds of this type may be useful when many locations have
small upper bounds on vjt. We did not implement this type of bound
because of the computational effort required for the large number of
routes in our problems.

6. Computational Results
We perform a series of computational tests in order to evaluate the

effectiveness of our algorithm on the original problem and on the two
problem variants. Before describing our computational study, it is im-
portant to point out that preliminary computational tests showed that
both (i) the bounds described in the previous section and (ii) constraint
sets (3.7) and (3.8) that are redundant in (P) but not redundant in (P1)
are critical in finding solutions quickly. Without them, our procedure is
not efficient, and the standard implementation of CPLEX applied to (P)
is rarely able to find feasible solutions, even for problems of modest size.
We report results in which both solution approaches, i.e., our Lagrangian
approach and applying CPLEX to (P), are afforded the benefits from
these additional valid inequalities. We next detail problem generation,
and then discuss results.
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6.1 Problem Generation and Execution of
Algorithms

We generate a variety of problem instances for our computational
study. Each problem instance has a five day time horizon. For each
customer, the minimum number of days of service in a week is randomly
generated from a U[1,3] distribution. We chose this range for the mini-
mum days of service because problems with a four-day minimum service
requirement are easier to solve and a five-day delivery requirement elim-
inates day-of-week decisions altogether.

The depot is located at the center of a 100 “mile” x 100 “mile” area.
The location of each customer and end-customer is determined by ran-
domly generating (i.i.d.) horizontal and vertical coordinates from a
U[0,100] distribution. All customer locations are thus distinct, so there
is a one-to-one relationship between customers and job types. Once
customer and end-customer locations are generated, we use Euclidean
distances and assume that transportation costs are linear in the travel
distance (normalized to $1 per “mile,” which is roughly equal to the true
variable cost for many 3PL providers). All trucks are assumed to have
a capacity of 20 units (e.g., pallets).

Each customer’s daily inventory holding cost per unit is generated
from a U[0.5,5] distribution. This range of inventory holding costs corre-
sponds to goods whose value may be as much as approximately $20,000
per (full) truckload. For such goods, less-than-daily delivery may be
warranted, necessitating day-of-week decisions.

To generate candidate routes, we initially generated all combinations
of 1, 2, 3, or 4 job types. In typical applications involving the transport
of components to manufacturers and finished goods from distribution
centers to retailers, the combination of transit times between customers
and end-customers and enroute loading and unloading time limits the
number of customers that a single vehicle can service to about 4 job
types in a typical work shift, especially in congested urban areas.

Before solving the traveling salesman problem (TSP) for each combi-
nation, we apply a filter which eliminates those combinations for which
a very loose lower bound on total route time exceeds a 7.5 hour work-
day. We assume an average driving speed of 40 miles per hour (which
is similar to the value used by regional delivery companies in major
metropolitan areas), and a total of 30 minutes for loading, unloading
and waiting time associated with one delivery. For those combinations
that pass the filter, we solve the TSP (by enumeration) and eliminate
the combination if the route time for the optimal TSP solution exceeds
the 7.5 hour threshold, or retain the best TSP routing if the route time
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is below the threshold. However, we retain all single-job-type routes,
even if they exceed the route time threshold, to ensure that a feasible
solution exists.

We solve one set of (“small”) problems with 25 customers and their
respective end-customers. The problem sizes in this set are limited in
order to allow us to compare our heuristic solutions with those obtained
from commercial software. The second set contains (“large”) problems
with 50 customers and their respective end-customers. All computations
are performed on a Sunblade 1000 with 1 GB RAM. CPLEX 7.0 is
utilized for (P) and its variants, as well as for the subproblems in the
Lagrangian procedure. We use AMPL as the matrix generator for the
solver, and as the scripting language for the Lagrangian procedure. In
all instances, we record only the solve time required.

For each problem instance, we solve the original version of the prob-
lem (P), as well as Variants 1 and 2. We first generate bounds on the
vjt values, as described in Section 5.4, to be applied in the original ver-
sion and in Variant 2. We execute our Lagrangian procedure as well
as CPLEX applied to each variant of (P), utilizing all relevant bounds
on the vjt values. We employ an optimality tolerance of 2% for both
procedures, and, because preliminary results indicate that the quality
of the CPLEX solutions for the original problem and for Variant 2 do
not improve significantly after several hours, we impose a time limit of
4 hours on both the 25-customer and the 50-customer problems. The
four hour time limit allows for a reasonable tradeoff in both solution
procedures between optimality and solution time. In executing the La-
grangian procedure, we terminate it when either the optimality tolerance
or the time limit is reached, or, additionally, when the step size becomes
zero to within the precision of the computer (precluding significant im-
provement in the objective function value), whichever comes first. (See
the Appendix for details of CPLEX parameter settings and numerical
implementation issues.) We discuss parameters specific to the problem
sets, along with computational results, below.

6.2 25-Customer Problems
For this set of 10 problems, we generate demand for each customer

and each day from a truncated Normal (µ = 10, σ = 3) distribution,
rounded to the nearest integer. For these problems, it is unlikely that
more than one vehicle will visit a customer on a given day in a good
solution (i.e., it is unlikely that vjt > 1). Consequently, even Variant
1 would not be overly constraining for these problems. For this set
of problems, after applying our filter, the number of remaining routes is
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about 7,000, corresponding to between 8,000 and 34,000 binary variables
for Variants 1 and 2 (and a few hundred integer variables for Variant 2),
and a corresponding number of integer variables for the original problem.
The problems contain about 500 constraints.

In Table 3.1, we report the objective values for the problem variants
and for the two solution procedures, along with the corresponding opti-
mality gaps (best objective from procedure/lower bound from procedure
- 1). Where optimality gaps are not reported, the gap is less than 2%.
For Variant 1, both procedures solve all 10 problems to within approxi-
mately 2% of their respective lower bounds fairly quickly.

Variant 2 and the original problem are more difficult to solve. For
Variant 2, the Lagrangian procedure identifies solutions within 2% of
their respective lower bounds for all 10 scenarios in less than 25 minutes
of CPU time, whereas after 4 hours of computing, CPLEX applied to
(P) identifies solutions with optimality gaps of between 5% and 15%.
For the original problem, the Lagrangian procedure identifies solutions
within 5% of their respective lower bounds for 3 of the problems and
within 8.3% for all 10 problems before the step size becomes virtually
zero. CPLEX applied to (P) identifies a solution within 5% of its lower
bound for only one problem, within 10% of its lower bound for 7 of the
10 problems, and within 14.3% for the remaining problems.

Although the Lagrangian solutions have optimality gaps of up to 2%
for Variant 2 and up to 8.3% for the original version of the problem,
for each of the 10 problems, the Lagrangian procedure finds a solution
that ranges from one-half of one percent to more than 7% percent better
than the solution identified by CPLEX applied to (P), with an average
improvement of approximately 2-3%. In addition to providing better
solutions, the Lagrangian procedure consumes, on average, less than 5%
of the CPU time for our (fine-tuned) CPLEX implementation on the
corresponding instances of Variant 2 and the original problem.

For the distribution from which we generated demands, the vjt ≤
1 and zrt ≤ 1 constraints present in Variant 1 are unlikely to affect
the optimal solution. The imposition of these constraints reduces the
search space so the Variant 1 problems require considerably less CPU
time than the other problem variants; thus, Variant 1 can be solved
with a straightforward implementation of CPLEX applied to (P). Thus,
where it is reasonable to assume that vjt ≤ 1 in an optimal solution, the
application of Variant 1 appears to be a practical alternative.
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A typical 3PL provider would not explicitly consider the consequences
of its selected route schedule on the cost of holding inventory at the end-
customer. But the 3PL provider has the opportunity to offer tangible
value to the party who bears the cost of holding inventory by offering
more frequent service, and this value can translate into additional rev-
enue for the 3PL provider. For this reason, we are interested in the
consequences of ignoring inventory holding costs. To make this assess-
ment, we use CPLEX applied to (P) (although, in principle, we could
have used either procedure) to solve Variant 1 with the inventory holding
costs set to zero. This version of the model is identical to the standard
PVRP with the usual assumptions that (i) at most one visit is made to
each end-customer (drop-off location) each day and thus also (ii) each
route is executed at most once each day. This models the situation faced
by the “traditional” 3PL provider, who optimizes his own costs (while
ignoring those of his customers). To tabulate the full cost of this solu-
tion, we add the consequent inventory costs. We treat this total cost as a
benchmark which we then compare to optimal or near-optimal solutions
to estimate the system-wide benefit of explicitly considering customer
inventory costs. Observe that whether or not the 3PL provider explic-
itly considers end-customer inventory holding costs when determining a
delivery schedule, the end-customers will incur these costs directly, in
addition to indirectly incurring the cost of transportation from the 3PL
provider.

The benchmark objective values are about 15% to 30% greater than
the corresponding values from Variant 1 (the most constrained version
of the problem), suggesting that accounting for inventory costs leads to
significantly better solutions if the 3PL provider is currently ignoring
inventory costs. Even if the 3PL provider considers inventory costs indi-
rectly by offering customers the possibility of better service at a higher
price, there may still be opportunity from using more accurate “value
pricing,” particularly for customers with expensive goods. In view of the
thin profit margins in the trucking industry, even a portion of a 15% to
30% gap is likely to be large enough to have a significant effect on the
bottom line.

6.3 50-Customer Problems
Our primary reason for solving 50-customer problems is to demon-

strate that problems of the sizes observed in some practical applications
can be solved by our procedure. Large logistics providers typically sub-
divide their customers into geographical districts, and/or according to
the type of vehicle required, e.g., standard, refrigerated, extra shock pro-
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tection (used for sensitive electronic goods), small vehicles (for narrow
roads or hilly terrains). The corresponding problems would then also be
separable by these job type categories.

Recall that one of our goals in constructing the Lagrangian proce-
dure is to develop a viable method of solving problems for which the
usual PVRP assumption of vjt ≤ 1 might be unnecessarily restrictive.
Because only highly correlated demands among customers on relatively
“efficient” routes (with little deadheading) would lead to zrt > 1, we gen-
erate customer demands in such a way that we could test Variant 2 and
our original problem for cases with some individual demands exceeding
a truckload. We solve 10 problems with 50 (customer, end-customer)
pairs. Demands are generated from a truncated Normal (µ = 20, σ = 5)
distribution, rounded to the nearest integer.

After applying the route filter, these problem instances contain about
60,000 routes. In general, these problems contain between 250,000 and
600,000 binary variables (and a few hundred integer variables) for Vari-
ant 2, and a corresponding number of integer variables for the original
version of the problem. The problems contain between 1000 and 1500
constraints, on average.

Results for the 50-customer problems appear in Table 3.2. Where
optimality gaps are not reported, the gap is less than 2%. CPLEX
applied to (P) fails to find a feasible solution within 4 hours of CPU
time for 9 out of the 10 problem instances (for both Variant 2 and
the original problem). On the other hand, the Lagrangian procedure
identifies a solution within 2% of optimality in 9 of the 10 cases for
Variant 2, and in the tenth case, the optimality gap is only 2.3%.

The Lagrangian procedure also identifies solutions within 2% of op-
timality for 3 of the 10 cases of the original problem. In the remaining
7 cases of the original problem, the Lagrangian procedure provides so-
lutions that are generally within 8% of the corresponding lower bound,
but the gaps range up to 18%. We allowed the Lagrangian procedure to
run to termination (i.e., until the step size equals virtually zero) for the
two problems that have large (> 10%) gaps at the 4 hour time limit, and
found that at termination, solutions within 7% of the respective lower
bounds were achieved.
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Solving the original problem with 50 customers is evidently quite dif-
ficult, but the Lagrangian procedure reliably finds what appear to be
good feasible solutions, while, for the vast majority of problem instances,
CPLEX applied to (P) is unable to find any feasible solution.

A portion of the difficulty of solving 50-customer problems is due to
the large number of routes. In practical applications with several dozen
job types, a 3PL provider would rarely consider including 50,000+ routes
as we have done in our computational study. In practice, routes would
be eliminated due to factors other than route time, so the usable set
would be much smaller. Consequently, problems with more job types
and proportionally fewer routes are within the range of what could be
solved in practice.

Although the Lagrangian procedure produces excellent solutions in
most cases, it could also be used to provide strong bounds in a branch-
and-bound framework if one desired to use an enumerative procedure
to find better solutions. The Lagrangian procedure could be executed
differentially at various nodes in the branch-and-bound tree to take best
advantage of its flexibility.

Overall, the Lagrangian procedure appears to be a promising ap-
proach, especially for solving these difficult problems in which vjt may
exceed 1, where there are strong interactions among the decisions across
both locations and time periods.

7. Summary and Conclusions
We have modeled a multi-customer, multi-period delivery scheduling

problem faced by a third-party logistics provider in which routes must
be selected, and delivery quantities must be decided while satisfying
constraints on the number of customer visits during a specified horizon.
We have developed a solution procedure based on Lagrangian relaxation
to minimize the total cost of transportation and inventory.

In this paper, we focus on the route selection and delivery quantity
decisions because a typical 3PL provider has little difficulty generating
a practical set of candidate routes, taking into account the structure
of the road network, traffic patterns, etc. Our primary concern was to
find an effective solution procedure given a good set of candidate routes.
We constructed a relaxation that provides strong bounds, owing largely
to the combination of the following: (i) the identification of additional
valid inequalities that “tighten” the formulation and the relaxation, (ii)
the economic structure of the relaxation in which one of the subprob-
lems integrates the impact of the timing of deliveries to the various
end-customers with the inventory decisions, and (iii) upper bounds on
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the values of certain decision variables that are derived from the solu-
tions to variants of certain subproblems. The subproblem mentioned
in (ii) above has the unusual feature of potentially negative setup costs
(for some values of the Lagrange multipliers) and we develop an optimal
polynomial-time solution procedure for it.

We also consider two variants of the problem in which we impose one
or both of the constraints implicitly assumed in much of the literature.
The weaker of the two constraints permits a route to be used at most
once each day, and the stronger constraint limits the number of routes
servicing each customer each day to at most one. Computational results
indicate that the Lagrangian procedure performs well on difficult prob-
lem instances for which it is ineffective to simply apply CPLEX to (P).
The results also suggest that the imposition of the additional simplify-
ing constraints does not significantly affect the quality of the solutions
when it is unlikely that two trucks will be sent to a single customer on the
same day in an optimal solution, and that the resulting problems require
much less computational effort to solve. When demand is such that more
than one stop per day is required at a customer (i.e., Variant 2 or (P)
is appropriate), the Lagrangian procedure obtains very good solutions
fairly quickly. More notably, the Lagrangian procedure produces very
strong bounds, and thus may be valuable within a branch-and-bound
procedure.

Several generalizations can be handled with no modification or only
minor modifications to our approach. Time varying costs require no
change in the solution procedure. Constraints on route duration and
delivery and pick-up time windows can be considered in the route gener-
ation routine. Heterogeneous truck types can be handled by generating
routes applicable to each truck type. If a job type can be serviced by
more than one type of vehicle, then our algorithm for (P2) cannot be
used directly, but because this subproblem is separable by job type, it
can be solved using commercial software with a concomitant increase in
the CPU time. If truck availability imposes practical limitations and
rental vehicles are available, it would be possible to add the cost of a
rental vehicle to each route and solve the problem in the usual way. The
ability to avoid rental costs for the routes covered by the 3PL provider’s
own vehicles would create a “sunk” benefit in the model (i.e., it would
appear as a non-controllable “cost” in the objective function that would
not actually need to be paid), and the rental costs for all additional
vehicles would be properly accounted for.

Multi-day routes can be handled with a modification to the formu-
lation to account for the actual day of delivery and the extra cost of
inventory due to goods in transit. Also, allowing multiple shipments
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to be loaded onto a truck at the same time can be handled, in prin-
ciple, for small, pre-defined sets of job types that typically have small
shipments. Considerable “bookkeeping” effort in the route generation
scheme may be required, as well as a change in the solution method for
P2. (The revised version of P2 could still be solved easily using com-
mercial software.) Of course, if the solution generated by our procedure
allows for consolidation of loads for customers that happen to be on the
same route, then any such route can be modified to take advantage of
such opportunities if they reduce costs.

The Lagrangian procedure may be enhanced by devising more effec-
tive multiplier adjustment methods especially designed for this problem,
or other methods for constructing feasible solutions from the Lagrangian
solutions. Also, if the problem contains a particularly large number of
potential routes, it may be possible to generate only a subset of the
routes a priori and to utilize a column generation-based approach to
construct other economically viable routes. Further research is needed
to explore the implications of such a strategy. Recall that subproblem
(P2) already is separable by customer, so it is easily solved for large
numbers of customers. It may be necessary, however, to devise a more
efficient solution method for subproblem (P1).

Further research is also needed to consider more rigid constraints on
allowable day-of-week combinations (e.g., MWF or Tu-Th) and the pos-
sibility of backorders, and to handle uncertainty in demand and transit
times.

Appendix: Computational Implementation Issues

CPLEX
For all executions of the CPLEX software on the original problem

and its variants, we use strong branching, i.e., the branching variable is
selected whose resolution is most likely to yield the greatest improvement
in the objective function value. This setting provides the best overall
performance.

Lagrangian Procedure
Within the Lagrangian procedure, we employ variants of the stan-

dard subgradient optimization method to update the multipliers. For
Assumption 1, we use the variant of the subgradient procedure (Held
et al. 1974) described in Camerini et al. (1975). For Variant 2 and the
original problem, we use a version in which the scale factor is halved if
the lower bound has not improved after 5 iterations. We also update the
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multipliers using a weight of 0.35 on the slack from the prior iteration
and a weight of 1 on the slack from the current iteration.

To solve subproblem (P2), which can be solved easily using CPLEX
(thus obviating the need for the special-purpose algorithm developed in
Section 5.1), we use the default branch-and-bound algorithmic settings,
including the default optimality tolerance of 0.0001.

Subproblem (P1) is more difficult to solve than (P2). For the orig-
inal formulation and for Variant 2, we use the solution from the prior
iteration as a “warm start” for the next iteration. We do not utilize the
CPLEX-generated cuts because we observed that they do not provide
much benefit relative to the CPU effort. We also select the CPLEX
parameter setting that emphasizes optimality over feasibility. We solve
each subproblem to within 5% of optimality or stop after 1000 seconds,
whichever occurs sooner. For Variant 1, we similarly use the solution
from the prior iteration as a “warm start” for the next iteration and we
turn off the CPLEX-generated cuts. We use a search strategy in which
the branching variable is selected based on “pseudo-reduced” costs, i.e.,
estimates of the change in the objective from rounding a fractional vari-
able to the nearest integer; the branching node is selected based on the
best integer objective that can be achieved from solving the subproblem
corresponding to all nodes eligible for selection. We solve each subprob-
lem to within 1% of optimality. The ease with which these subproblems
are solved in contrast to those in Variant 2 and the original problem
obviates the need for a time limit.
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