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Abstract

Due to technological progress, policy thrust and economic circumstances, the large scale
integration of renewable energy sources such as wind and solar power is becoming a
reality in California, however the variable and unpredictable supply of these renewable
resources poses a significant obstacle to their integration. At the same time we are
witnessing a strong thrust towards the large scale deployment of electric vehicles which
can ideally complement renewable power supply by acting as storage buffers for
maintaining stability in the presence of large amounts of renewable power. In this paper
we use California system data for identifying the degree to which wind and solar power
supply correlate with battery electric vehicle loads. Moreover, in order to assess the
economic viability of utilizing renewable resources for powering electric vehicles we adopt
the point of view of a profit maximizing electric vehicle service provider which seeks an
optimal portfolio of energy supply contracts for satisfying electric vehicle energy demand,
and we find that wind generation is a cost competitive option, whereas solar power supply
does not appear to be an economically viable option. We also demonstrate how smart
charging strategies for satisfying electric vehicle energy demand can lead to significant
cost savings for the electric vehicle service provider.

1. Introduction

After 30 years of rapid technological development and owing to current economic, political
and environmental circumstances, renewable energy sources such as wind and solar
power are poised to become a mainstream energy source capable of supplying bulk



quantities of power to power systems. California, in particular, is providing fertile ground
for renewable energy development. California already hosts 2493 MW of wind power, the
second greatest installed capacity in the US, and in 2006 11% of the state energy
consumption was supplied by wind energy [5]. Renewable power growth in California will
continue as renewable energy is enjoying strong political support. Assembly Bill 32 has set
a goal of cutting back greenhouse gas emissions to 1990 levels by 2020 and the
Renewable Portfolio Standard (RPS) mandates 20% integration of renewable energy in
California by 2010. In addition, the electricity market facilitates the trading of renewable
power. The Market Redesign and Technology Upgrade (MRTU) which was launched in 2007
is a reform of the California electric power market which enables loads to bid into the
market in order to mitigate the effects of renewable power variability. Independently from
MRTU, the Participating Intermittent Resources Program (PIRP) which was launched in
2002 offers favorable treatment to wind generators by exempting them from various
market penalties relating to supply deviations [5].

As wind and solar power are becoming a mainstream energy source, their random and
variable fluctuation is becoming a serious impediment to their large scale integration. The
unpredictable and variable supply of renewable power may result in balancing actions that
range from ramping other generators, load following, primary and secondary control
actions, to the upset of hour-ahead and day-ahead schedules. These balancing actions are
costly, lead to air pollution, cause wear and tear to machinery and require significant
investments in system backup. Empirical and academic studies have placed an estimate
on the costs resulting from wind variability at a range of 0 to 7 $/MWh [7], [13], [14]. In
addition, renewable power is often adversely correlated with system supply and demand
patterns, and may be discarded even when it is abundantly available [5].

The large scale deployment of electric vehicles in transportation networks offers system
operators access to an extraordinary storage resource which can strongly mitigate the
aforementioned operational disturbances. EVs represent an extremely flexible class of
electric loads and it is natural to consider the potential of charging vehicles according to
the supply of non-dispatchable renewable energy sources in order to increase our reliance
on renewable energy generation without compromising grid stability.

Apart from offering benefits to grid operators in terms of load response, the utilization of
EV batteries as storage buffers for renewable energy results in a direct substitution of
petroleum by renewable power for fueling the transportation sector. In 2007 the U.S.
transportation sector accounted for 29% of national annual energy consumption, and it
was almost exclusively fueled by oil [1]. It is therefore evident that EVs present a unique
opportunity for accelerating our transition towards cleaner energy sources.

From an academic standpoint, the challenge of actively utilizing electric vehicles and other
flexible resources for the purpose of mitigating renewable power variability offers fertile
ground for the application of various optimization techniques. The utilization of load
resources can be considered as a generalization of the traditional unit commitment
problem [12] where, in addition to the optimal commitment and operation of generation



resources, we are also able to actively dispatch certain classes of flexible load resources.
Due to the potentially large number of flexible load resources the use of unit commitment
models and their associated solution techniques may be hindered by computational
limitations, therefore an alternative approach could be efficient heuristic scheduling
algorithms for determining the priority service of flexible loads [2], or the use of
suboptimal dynamic programming techniques [3].

In the following sections we use an annual dataset of California solar and wind power
supply to analyze the potential of using renewable power for charging EVs. We first
estimate the extent to which renewable energy capacity can satisfy EV energy demand
solely based on the relative pattern of renewable supply and EV demand. Next we assess
the economic competitiveness of renewable energy with nonrenewable energy sources by
solving for the optimal portfolio of supply contracts which can cover EV energy demand.
We also assess the sensitivity of our results to various assumed model parameters.
Finally, we explore the potential economic savings from “smart charging,” i.e.
sophisticated charging strategies which shift charging off of peak hours and accommodate
increased utilization of renewable power.

In Section 2 we describe the central assumptions and methodology of our analysis. In
Section 3 we present our key results, in Section 4 we discuss future research directions
and in section 5 we summarize our conclusions.

2. Methodology

In our analysis we consider the task of a service provider which has the objective of
supplying electricity to EVs in a cost effective and reliable fashion. In particular, the
service provider decides when EV batteries are charged, and strives to postpone charging
during hours of low system demand while ensuring that charging is not postponed long
enough that vehicles run out of energy en-route. This provider could either be the local
utility or an independent load management entity. Due to regulatory constraints we
assume that the EV service provider is required to offset the emissions of EV energy
supply, either by directly supplying solar or wind power, or by purchasing the appropriate
quantity of renewable energy credits (RECs) to neutralize nonrenewable energy supply to
EVs. Moreover, we assume that the EV service provider can select from a mix of wind,
solar, and fossil fuel contracts with the objective of minimizing its operational costs.’
From the point of view of the service provider, wind and solar power supply offer the
advantage of contributing to the commitment for satisfying demand with renewable
energy sources. On the other hand, these resources are unreliable, and if faced with a
shortage we assume that the service provider must procure energy from the electricity
spot market. Fossil fuel generators, in contrast, are more reliable and lower cost;
however, their emissions must be offset by the purchase of RECs.

1 For the vehicle adoption level which we consider in our simulation scenarios (100,000 cars), the
required renewable supply capacity does not exceed the installed capacity of the California system

[5].



2.1 Model formulation

The service provider solves a two-stage optimization problem. In the first stage the

service provider needs to decide the capacity of contracted fossil fuel generation q,,, wind

power generation ( and solar power generation ( . As mentioned previously, the

purchased amount of fossil fuel generation is supplied throughout the year reliably,
whereas the corresponding wind and solar power capacity result in randomly varying

power generation described by the processes I/, §,. Given these higher-level decisions

the service provider then solves the following dynamic optimization problem for charging
electric vehicles:

A4q,.q,.9,):
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where G,J. is the amount of power supplied to user [ in period f, ll is the hour-ahead

market price of electricity which is a random process, € _ is the amount of RECs
purchased by the service provider and /Irec is the purchasing price, C is the maximum

rate at which vehicles absorb power, [ is the amount of energy required to charge the

vehicle of user /, and 7:3 and 7:dare the arrival and departure times of user /

respectively. | is the set of users that the service provider is serving. 7 is a policy

function which maps the current state of the system to an action vector C [e /, for the

ti’

current period 1.



The first constraint requires that the power supplied to vehicles be nonnegative and not
exceed the power rating of the vehicles. The second constraint implies that the amount of
power allocated to vehicles in period [ does not exceed the total amount of power
available to the service provider. The third constraint requires that the energy demand of
vehicles be fully satisfied within their designated deadlines and the fourth constraint
prohibits supplying power to vehicles before their arrival time. The final constraint
imposes that the service provider either fully cover customer demand via renewable
sources, or that the emissions be fully offset by REC purchases.

The problem presented above is a sequential optimization problem under uncertainty and
dynamic programming can be used for solving this problem. In fact, it is the second
constraint which complicates the problem since in the absence of this constraint the
problem would decompose to the individual users and would reduce to solving a number
of deterministic optimal control problems equal to the number of users. Although dynamic
programming can be used for solving this problem in principal, the curse of dimensionality
renders dynamic programming as a computationally prohibitive approach. In this paper
we are using a suboptimal policy which allocates during each period the greatest possible
amount of contracted resources to standby vehicles:

o If all standby vehicles can be satisfied by the contracted resources, then the all
vehicles receive power and the remaining supply is discarded.

o If standby vehicle demand exceeds the amount of contracted supply for the current
period and vehicle charging can be postponed without violation of charging
deadlines, then as many vehicles as possible are charged with existing resources
and the charging of remaining vehicles is deferred.

e If current period supply does not suffice for charging all vehicles and postponing
charging is not possible without violating the charging deadlines, then all vehicles
are charged in the current period with contracted supply resources and the deficit of
supply is purchased from the hour-ahead market.

The aforementioned charging policy is not suboptimal. There has been an extensive line of
research on sophisticated heuristic policies for dynamic programming which could inspire
alternative approaches for this specific application, including certainty equivalent control
[3] and approximate dynamic programming [9], [10]. Finally, another fruitful technique of
attacking the problem above would be to derive properties about the optimal policy and
the value function from the Bellman equations [11]. For example, it is possible to show
that a simpler version of the aforementioned problem has a bang-bang form which
simplifies the computation of an optimal solution by limiting the search of the action
space.

Once a heuristic charging policy has been determined it is possible to solve the higher
level problem of determining an optimal choice of (,, §, and (. by solving the following

problem:
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where P°(q,,4,, @,) is the expected cost of the lower level problem by adopting policy

7T , and potentially, /1W, and ls are the prices of the fossil fuel, wind power and solar

power contracts respectively. In our case this problem was solved by brute force by
searching over a discrete set of contracted quantities and choosing the portfolio with the
lowest expected cost.

2.2 Model data

We assumed that vehicle batteries have charging capacity of 20 kWh, power rating 3 kW
and a mileage of 0.25 kWh per mile, which implies that cars can travel a distance of 80
miles without recharging. We imposed two deadlines for charging vehicles during a 24-
hour time period: the morning deadline is at 6 a.m. and the evening deadline is at 4 p.m.
This would be a reasonable charging strategy which would ensure that all drivers have
adequate energy stored in their vehocles to ensure that they can commute to work and
back home without emptying their batteries en-route. All drivers are assumed to have a
25-mile commute to work and back home. This long commute is due to the fact that an
EV service provider may prefer to target long-range drivers first, since they have the
greatest financial incentive to switch to EVs. The arrival times of drivers to their
destinations are assumed to be known in advance to the service provider. In figure 1 the
intensity of arrival times is shown to vary throughout the day, with most arrivals
concentrating around 9 a.m. when drivers arrive to work and 6-8 p.m. when drivers arrive
back home.

The wind power supply data used for the simulations are based on a wind speed model
developed by the National Renewable Energy Laboratory [6]. We used hourly data for six
locations in California for the full duration of 2004. As prescribed in [6], we used the
power curve characteristics of Vestas V90 3 MW generators with a cut-in speed of 4 m/s,
a cut-off speed of 25 m/s, and a speed of 15 m/s for maximal output. Generators located
in the same site were assumed to have identical outputs. In order to model solar
generation, we used hourly insolation data for the full duration of 2005 from the solar
database of the National Solar Radiation Database (http://www.nrel.gov/rredc/). We
assumed that the solar panels have 20% efficiency.

In order to model the hour-ahead market prices in California, we used the average hourly
ex post energy prices for the full duration of 2006, retrieved from the California
Independent System Operator database (http://oasis.caiso.com). In addition, for the
baseline scenario we assumed a price of $45/MWh for fossil fueled generation constracts
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[7], a price of $60/MWh for wind power generation contracts [7], a price of $170/MWh for
solar power generation contracts [8], and a price of $20/MWh for RECs.

3. Results

3.1 Renewable energy supply relative to EV energy demand

The graphs in figure 1 are based on annual data which has been averaged over each hour
of the day. We have superimposed wind and solar power supply on EV demand and we
have normalized the graphs with respect to their maximal value in order to highlight their
relative patterns. Note that EV energy consumption refers to the energy consumed by the
vehicles, not the energy which is supplied to the vehicles by the service provider.
Although EVs consume energy according to the blue curve, the time at which they are
charged can be adjusted in order to better correlate with solar and wind power supply.
Therefore, although renewable supply peaks when EV consumption is low, morning
charges can be postponed to coincide with solar power supply and evening charges can be
similarly postponed to coincide with wind power supply. It should be noted that the actual
day-to-day and intra-hour variation of the supply sources differs strongly from the
average behavior shown in figures 1-3.
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Figure 1: Annual average of daily solar power supply, wind power supply and EV energy
consumption.
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Figure 2: Average daily solar power intensity by season.
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Figure 3: Average daily wind speed by season.

The graphs in figures 2 and 3 are based on the same data as figure 1, but have been
broken down by season in order to highlight the impacts of seasonality on renewable
energy availability. We observe that both wind speed and solar intensity follow the same
average pattern throughout the day for all seasons, however the variability varies
significantly between seasons. Wind power is most variable during the summer, whereas
it is most regular during the winter. Likewise, solar intensity varies most during the
summer, and its summer peak is three times greater than its winter peak. Figure 3 also
confirms that wind power supply is greatest during the night in California. This further



validates the value of EVs for renewable energy integration, since it is during the night
that wind is least needed by the system operator and is often discarded.

Table 1 shows the simulation results of dedicating various combinations of wind and solar
power capacity to 100,000 vehicles where we have used the charging algorithm described
in section 2.1. The table shows the fraction of EV energy demand which can be covered
by renewable energy by employing the simple charging strategy described in section 2.1.
We can make certain observations from table 1. Comparing the first row and column, we
observe that each unit of wind power capacity can serve a greater fraction of EVs than an

equivalent unit of solar power capacity. Diagonal cell (/, l) yields better results than the

first-row cell (1,2/) but worse results than the first-column cell (2/,1) indicating that a

given unit of wind power capacity is more effective than a balanced mixture of wind and
solar power capacity which is more effective than a unit of solar power capacity. Moreover,
by observing the lower right area of the matrix we observe a saturation effect where
significant increments in renewable power capacity yield minor improvements in load
service.

0 30 60 90 120 150 180
0.0 12.5 25.0 35.8 43.7 47.4 50.0
17.4 29.9 42.2 51.2 56.4 59.9 62.0
34.6 46.9 57.6 64.5 68.4 71.0 72.7
48.9 59.8 68.4 73.6 76.8 78.8 80.2
59.0 68.2 75.1 79.3 81.8 83.5 84.7
65.9 73.7 79.6 83.2 85.3 86.7 87.7
70.9 1.7 82.8 86.0 87.7 89.0 89.8

Table 1: Percentage (%) of EV energy demand satisfied by renewable energy sources
(100,000 cars).

In table 2 we observe the tradeoff between load service and wind power utilization. As
increasing capacity is dedicated to EV charging, an increasing fraction of the EV fleet can
be served by wind power, however a relatively greater proportion of wind power supply is
discarded due to its uncontrollable availability in unfavorable hours. Nevertheless, it is
worth noting that we are able to serve 59% or more of the EV load while discarding less
than 10.2% of the available wind power.

Demand Wind power
coverage (%) utilization

Wind (MW)
30
60




90 48.9 96.6
120 59.0 89.8
150 65.9 81.6
180 70.9 74.0

Table 2: EV demand coverage and wind power utilization for various levels of wind power
capacity (100,000 cars).

3.2 Baseline scenario

In this section we focus on identifying the optimal supply mix for providing electricity to
100,000 EVs at minimum cost. We compare this baseline scenario to alternative scenarios
in the following sections. As we described in the methodology section, we assume the
following prices for the baseline scenario: $45/MWh for fossil fuel contracts, $60/MWh for
wind power generation contracts, $170/MWh for solar power generation contracts, and
$20/MWh for RECs. According to our model, whenever excess renewable power is
available to the EV service provider we assume that it is discarded. This assumption is
justified by the fact that system operators cannot easily accommodate supply which
becomes available upon short notice, therefore the owner of the supply contracts will be
unable to supply the excess renewable power to the market if EVs cannot absorb it. This
assumption can be relaxed in our model, but the results presented here assume that all
excess energy is discarded.

By running our simulation model with various amounts of renewable and nonrenewable
resources in the supply mix, we determined that the best option for the baseline case is a
contract of 60 MW for wind power generation. No solar or dispatchable fossil fuel
generation is included in the optimal supply mix. The proposed supply portfolio amounts
to an annual cost of $30.5 million. This cost is broken down as follows: $8.6 million is
expended in the wind energy supply contract, $15.6 million is expended in the hour-ahead
market, and $6.3 million is expended in RECs. It is worth noting that the optimal solution
suggests a conservative approach whereby the EV service provider covers only 32% of its
needs with contracted wind power and prefers to purchase its remaining obligation in the
form of REC credits. In fact, 99.8% of the wind supply is actually utilized by EVs, since
the limited availability of contracted wind power rarely exceeds instantaneous EV energy
demand.

In figure 4 we highlight the impact of seasonal variability in the baseline scenario. We
observe considerable seasonal variation with maximum renewable energy supply to EVs
occurring during the spring and minimum supply occurring during the fall. There is an 8%
differential between the two seasons, which is a considerable fraction of the maximal
supply which occurs during the spring (36%).
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Figure 4: Percent of load satisfied by renewable energy sources by season for baseline
scenario.

3.3 "Smart” charging

We have mentioned that in the baseline scenario all vehicles are fully charged at 6 a.m.
and 4 p.m. This is a stringent constraint since the one-way commute of most drivers does
not exceed the full capacity of the EV battery. If the EV service provider is able to adapt
charging schedules to individual driving, it should be possible to relax the aforementioned
policy by allocating each driver enough energy to ensure that the EV does not encounter
an energy shortage en-route albeit without charging batteries at full capacity during the
two deadlines. This would result in increased flexibility for the EV service provider, greater
utilization of renewable power supply and reduced exposure to the hour-ahead market.
The result of applying the relaxed constraint is shown in Figure 5, where we present hour-
ahead market purchases and REC charges for three different charging strategies. The first
is @ naive approach whereby customers are charged immediately as they connect their
vehicles to the grid. The second is the baseline 6 a.m. - 4 p.m. charging strategy, and
the third is a relaxed charging strategy whereby cars are charged at 75% of their full
capacity at 6 a.m. and 4 p.m. As opposed to the first and second case, which result in an
optimal portfolio which includes 60 MW of wind power, the third charging strategy results
in an optimal portfolio which includes an additional 20 MW of wind power. We observe
that refined charging strategies lead to cost savings of $5 million for the second case and
$8 million for the third case, as compared to cost of the naive strategy. It should also be
noted that the third strategy does not result in supplying less energy to EVs, but instead
results in supplying this energy at hours which are more favorable for the service provider.
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3.4 Cost Sensitivity

Figure 6 presents the sensitivity of our results on various parameters which strongly affect
the optimal solutions in our model. For each plot all problem parameters, except for the
one being varied, are held fixed to their baseline values and the optimal supply mix is
recalculated for each value of the varying parameter.
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Figure 6: Sensitivity of optimal contract on energy prices. From top to bottom: cost
breakdown for varying wind power, solar power, fossil fuel power and REC prices.

The upper bar diagram shows that overall supply costs are quite sensitive to wind power
prices. For low prices wind power is the optimal choice, while as price increases it is
optimal to include fossil fuels in the mix. Including fossil fuels suppresses hour-ahead
market costs but boosts REC costs. We can conclude that for a reasonable range of wind



power prices wind power is cost competitive with fossil fuel power supply in the supply
mix of a carbon neutral EV service provider.

From the second bar diagram we observe that solar power enters the optimal supply mix
below $72/MWh for solar power generation. This is considerably less than the current
cost of most solar power generation technologies. For higher prices of solar power, it is
optimal to shift from solar to wind power contracts.

In the third bar diagram we observe that beyond a fossil fuel price of $44/MWh it is
optimal to transition from fossil fuels to wind power. Again we observe that wind power is
cost competitive with fossil fuels for a reasonable range of fossil fuel prices.

The fourth bar diagram highlights the tradeoff between fossil fuels and wind. For low REC
prices it is profitable to purchase fossil fuel contracts and pay the deficit in RECs, but
beyond $18/MWh the total expenditure in RECs warrants a complete crossover to wind
power, and results in a boost of hour-ahead market purchases. Wind power appears to be
cost competitive with fossil fuel generation for a reasonable range of REC prices.

4. Future work

The optimal vehicle charging problem described in section 2 presents a challenging
optimal control problem and the simple charging rule which we have used can be
significantly improved. In particular, various suboptimal dynamic programming techniques
can be fruitfully applied as mentioned in section 2.1.

The analysis presented above adopts the point of view of the vehicle service provider,
however it is also interesting to address the economic incentives of renewable energy
generators. By supplying power to deferrable loads renewable generators are able to
enhance their capacity credit since their generation can be reliably absorbed by shifting
the consumption patterns of flexible loads. However, renewable generators would reduce
their energy revenues by selling their power to flexible customers at a reduced rate in
order to incent their flexible behavior. Whether renewable generators are better off
earning a higher capacity credit by selling discounted power to EVs, or by supplying power
at the hour-ahead market with a reduced capacity credit strongly depends on the extent
to which renewable supply is correlated with the market price of electricity. The greater
the correlation between market prices and renewable power supply the weaker the
incentive of renewable generators to enter an exclusive contract with a flexible load class.

The use of a unit commitment model can be used for assessing the impact of renewable
energy and EV integration on the hour-ahead market of electricity and the impact of
transmission constraints on system operations. Within a unit commitment model it will be
possible to incorporate loads as a resource which mirrors the behavior of generation
resources and examine the impact on system operation costs and reserve requirements.



Finally, it will be interesting to investigate the sensitivity of these results on the ability of
the system operator to accurately forecast renewable power supply.

5. Conclusion

We have used solar and wind power supply models for the state of California and a simple
driving pattern model for assessing the extent to which renewable power can be used for
fueling electric vehicles. Solar and wind power supply seem to have complementary
patterns, with wind power resulting in greater EV energy supply per installed MW. Both
renewable energy sources are influenced significantly by seasonality with supply being
greatest during the spring and lowest during the fall. By modulating the charging
patterns of EVs we obtain a significant level of wind power utilization. For example, using
120 MW to charge 100,000 vehicles covers 59% of the EV energy demand while resulting
in 90% utilization of wind power. In order to assess the economic competitiveness of
renewable power we calculate the optimal supply portfolio of an EV service provider which
has the option of supplying energy to vehicles either through renewable power supply
contracts, fossil fuel supply contracts or the hour-ahead market, subject to the constraint
of offsetting vehicle emissions. According to our baseline assumptions, the best choice for
supplying electricity to 100,000 EVs is contracting for 60 MW of wind power. This is a
conservative choice, whereby wind almost never exceeds EV demand, but only covers
31.2% of vehicle energy demand, with the resulting deficits purchased in the hour-ahead
market. Solar power becomes an economical option only below $72/MWh, which is
significantly below the cost of most existing solar technologies. In contrast, wind power is
economically competitive with fossil fuel generators at a reasonable range of wind power,
fossil fuel power and REC prices. Careful charging strategies can increase the amount of
wind energy that is economically absorbed by EVs, and can result in $8 million of annual
cost savings.

Acknowledgements

We would like to thank Richard O’Neill from the Federal Energy Regulatory Commission,
Alex Papalexopoulos from ECCO International and Sven Thesen from Better Place for their
helpful comments.

References

[1] Energy Information Administration. Annual Energy Review, Report No. DOE/EIA-
0384(2007). http://www.eia.doe.gov/emeu/aer/pecssdiagram.html.

[2] A. Papavasiliou, S. S. Oren Coupling Wind Generators with Deferrable Loads, 1IEEE
Energy 2030, Atlanta, Georgia, 17-18 November 2008.

[3] D. P. Bertsekas, Dynamic Programming and Optimal Control. Athena Scientific,
Bellmont, MA, 1995.



[4] B. 1. Kirby, "Demand Response for Power System Reliability: FAQ", Oak Ridge National
Laboratory, TN, Tech. Rep. ORNL/TM-2006/565, Dec. 2006.

[5] C. Loutan, and D. Hawkins, "Integration of Renewable Resources", California
Independent System Operator, CA, Nov. 2007.

[6] C. W. Potter, D. Lew, J. McCaa, S. Cheng, S. Eichelberger, and E. Grimit, "Creating the
Dataset for the Western Wind and Solar Integration Study (U.S.A.)", in Proc.2008 7th
International Workshop on Large Scale Integration of Wind Power and on Transmission
Networks for Offshore Wind Farms, pp. 288-295.

[7] F. van Hulle, "Large Scale Integration of Wind Energy in the European Power Supply:
Analysis, Recommendations and Issues", European Wind Energy Association, Brussels,
2005.

[8] DeBare, Ilana PG&E plans big investment in solar power, San Francisco Chronicle.
August 15, 2008.

[9] W. B. Powell, Approximate Dynamic Programming: Solving the Curses of
Dimensionality.Wiley Interscience, Hoboken, New Jersey, 2007.

[10] B. Van Roy, Learning and Value Function Approximation. PhD Thesis, MIT Department
of Electrical Engineering and Computer Science, June 1998.

[11] S. M. Ross, Introduction to Stochastic Dynamic Programming. Academic Press,
Orlando, FL, 1995.

[12] A. J. Wood, B. F. Wollenberg, Power Generation, Operation and Control, 2™ Edition.
John Wiley & Sons, 1984.

[13] T. Ackermann, Wind Power in Power Systems. Chichester: John Wiley and Sons,
2005.

[14] E. Hirst, and J. Hild, "Integrating Large Amounts of Wind Energy with a Small
Electric-Power System", Bellingham, WA, and Xcel Energy, Denver, CO, Apr. 2004.
[Online] Available: http://www.hks.harvard. edu/ hepg/Papers/Hirst_Hild_Wind
IntegrationReport.pdf.

Biographies

Anthony Papavasiliou is a third year PhD student in the department of Industrial
Engineering and Operations Research at UC Berkeley. He received a BS degree in
Electrical Engineering and Computer Science from the National Technical University of
Athens, Greece. Anthony has interned at XEROX PARC, has received two honorable
mentions from the Link Foundation Energy Program, and has received the 2009
Sustainable Products and Solutions Program Fellowship, the 2008 Energy and
Environmental Innovation award and the 2008 Information Technology for Society award
at UC Berkeley for his work on wind power integration and demand response.



Ikhlaq Sidhu is appointed in the Department of Industrial Engineering and Operations
Research at UC Berkeley. Professor Sidhu is an authority on the process of innovation and
technology management, with a prolific background as an inventor and executive in the
telecommunications and networking industry. He is the founding director of UC Berkeley's
Center for Entrepreneurship & Technology, founding faculty director for the Berkeley-
Tsinghua Global Innovation Center, and Co-chair of UC Berkeley's Management of
Technology Program. Within industry, he has held senior executive and technology
leadership positions at U.S. Robotics Corporation, 3Com Corporation, and Cambia
Networks. He was awarded 3Com's “Inventor of the Year” award in 1999, and has been
granted over 50 US Patents in fundamental and broadly used areas of networking
technology, IP telephony, and PDA functionality.

Shmuel Oren is Professor of Industrial Engineering and Operations Research at the
University of California, Berkeley. He is the Berkeley site director of PSERC. He has
published numerous articles on aspects of electricity market design and has been a
consultant to various private and government organizations. He holds a BS and MS degree
in Mechanical Engineering and Material Engineering from the Technion in Israel and he
received a MS and PhD degree in Engineering Economic Systems in 1972 from Stanford.
Dr. Oren is a fellow of INFORMS and a fellow of the IEEEs professor of IEOR.

Phil Kaminsky is an associate professor in the Industrial Engineering and Operations
Research Department at UC Berkeley. His current research focuses on the analysis and
development of robust and efficient techniques for the design and operation of logistics
systems and supply chains. He is a co-author of “Designing and Managing the Supply
Chain: Concepts, Strategies and Case Studies” (McGraw-Hill, 1999, 2003), which won the
Book-of-the-Year Award and Outstanding IIE Publication Award in 2000, and is co-author
of “Managing the Supply Chain: The Definitive Guide for the Business Professional”
(McGraw-Hill, 2004).



